A290532 Irregular triangle read by rows in which row n lists the number of divisors of each divisor of n.
1, 1, 2, 1, 2, 1, 2, 3, 1, 2, 1, 2, 2, 4, 1, 2, 1, 2, 3, 4, 1, 2, 3, 1, 2, 2, 4, 1, 2, 1, 2, 2, 3, 4, 6, 1, 2, 1, 2, 2, 4, 1, 2, 2, 4, 1, 2, 3, 4, 5, 1, 2, 1, 2, 2, 4, 3, 6, 1, 2, 1, 2, 3, 2, 4, 6, 1, 2, 2, 4, 1, 2, 2, 4, 1, 2, 1, 2, 2, 3, 4, 4, 6, 8, 1, 2, 3
Offset: 1
Examples
Row 6 is (1, 2, 2, 4) because the 6th row of A027750 is [1, 2, 3, 6] and tau(1) = 1, tau(2) = 2, tau(3) = 2 and tau(6) = 4. Triangle begins: 1; 1, 2; 1, 2; 1, 2, 3; 1, 2; 1, 2, 2, 4; 1, 2; 1, 2, 3, 4; 1, 2, 3; 1, 2, 2, 4; ...
Links
- Robert Israel, Table of n, a(n) for n = 1..10006 (rows 1 to 1358, flattened)
Programs
-
Maple
with(numtheory):nn:=100: for n from 1 to nn do: d1:=divisors(n):n1:=nops(d1): for i from 1 to n1 do: n2:=tau(d1[i]): printf(`%d, `,n2): od: od:
-
Mathematica
Table[DivisorSigma[0, Divisors@ n], {n, 25}] // Flatten (* Michael De Vlieger, Aug 07 2017 *)
-
PARI
row(n) = apply(numdiv, divisors(n)); \\ Michel Marcus, Dec 27 2021
Formula
T(n, k) = tau(A027750(n, k)).
Comments