cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290562 a(n) = n - cos(n*Pi/2).

Original entry on oeis.org

-1, 1, 3, 3, 3, 5, 7, 7, 7, 9, 11, 11, 11, 13, 15, 15, 15, 17, 19, 19, 19, 21, 23, 23, 23, 25, 27, 27, 27, 29, 31, 31, 31, 33, 35, 35, 35, 37, 39, 39, 39, 41, 43, 43, 43, 45, 47, 47, 47, 49, 51, 51, 51, 53, 55, 55, 55, 57, 59, 59, 59, 61, 63, 63, 63, 65, 67
Offset: 0

Views

Author

Keywords

Comments

a(n) divides A289870(n).

Crossrefs

Programs

  • Mathematica
    a[n_] := n - Cos[n*Pi/2]; Table[a[n], {n, 0, 60}]
  • PARI
    a(n) = n - round(cos(n*Pi/2)); \\ Michel Marcus, Aug 06 2017
    
  • PARI
    Vec((x^3 - x^2 + 3*x - 1)/((x - 1)^2*(x^2 + 1)) + O(x^100)) \\ Colin Barker, Aug 08 2017

Formula

G.f.: (x^3 - x^2 + 3 x - 1)/((x - 1)^2*(x^2 + 1)).
a(n) = n if n == 1 (mod 4), and a(n) = a(n-4) + 4 otherwise, for n>4.
a(n) = a(n+20) - 20.
a(n) = -A290561(-n).
a(n) + A290561(n) = 2*n.
a(n) * A290561(n) = n^2 - cos(n*Pi/2)^2 = A085046(n) for n>0.
From Colin Barker, Aug 08 2017: (Start)
a(n) = n - (-i)^n/2 - i^n/2 where i=sqrt(-1).
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) for n>3.
(End)