A290565 Decimal expansion of sum of reciprocal golden rectangle numbers.
1, 7, 7, 3, 8, 7, 7, 5, 8, 3, 2, 8, 5, 1, 3, 2, 3, 4, 3, 8, 0, 2, 3, 6, 2, 7, 6, 5, 6, 7, 6, 9, 6, 5, 9, 2, 2, 8, 3, 0, 7, 2, 3, 2, 3, 9, 3, 5, 9, 4, 3, 4, 1, 1, 0, 8, 3, 9, 2, 2, 9, 0, 4, 9, 8, 6, 4, 9, 2, 2, 0, 7, 5, 3, 0, 3, 8, 5, 1, 1, 9, 4, 7, 0, 3, 6, 2, 4, 3, 3, 3, 8, 6, 0, 5, 2, 6, 4, 2, 6, 9, 1
Offset: 1
Examples
1/(1*1) + 1/(1*2) + 1/(2*3) + 1/(3*5) + ... = 1 + 1/2 + 1/6 + 1/15 + ... = 1.77387758328513234380...
Crossrefs
Programs
-
Mathematica
RealDigits[ Sum[1/(Fibonacci[k]*Fibonacci[k + 1]), {k, 265}], 10, 111][[1]]
-
PARI
suminf(n=1, 1/(fibonacci(n)*fibonacci(n+1))) \\ Michel Marcus, Feb 19 2019
Formula
Equals Sum_{n>=1} 1/(Fibonacci(n)*Fibonacci(n+1)).
Equals lim_{n->infinity} A277266(n)/n.
Equals 2 * (Sum_{k>=1} 1/(phi^k * F(k))) - 1/phi = 2 * A265290 - A094214, where phi is the golden ratio (A001622) and F(k) is the k-th Fibonacci number (A000045). - Amiram Eldar, Oct 05 2020
Equals 3/2 + 10*c*Integral_{x=0..infinity} f(x) dx, where c = sqrt(5)/log(phi) = A002163/A002390, phi = (1+sqrt(5))/2 = A001622, and f(x) = sin(x)/((exp(Pi*x/(2*log(phi)))-1)*(7-2*cos(x))*(3+2*cos(x))). - Gleb Koloskov, Sep 12 2021
Extensions
More terms from Alois P. Heinz, Aug 06 2017
Comments