cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A295419 Number of dissections of an n-gon by nonintersecting diagonals into polygons with a prime number of sides counted up to rotations and reflections.

Original entry on oeis.org

1, 1, 2, 4, 8, 23, 64, 222, 752, 2805, 10475, 40614, 158994, 633456, 2548241, 10362685, 42485242, 175557329, 730314350, 3056971164, 12867007761, 54434131848, 231354091945, 987496927875, 4231561861914, 18198894300129, 78533356685275, 339958801585826
Offset: 3

Views

Author

Andrew Howroyd, Nov 22 2017

Keywords

Comments

a(n) first differs from A290816(n) at n=9 since this sequence does not allow the trivial dissection of a nonagon into a single nonagon.

Crossrefs

Programs

  • Mathematica
    DissectionsModDihedral[v_] := Module[{n = Length[v], q, vars, u, R, Q, T, p}, q = Table[0, {n}]; q[[1]] = InverseSeries[x - Sum[x^i v[[i]], {i, 3, Length[v]}]/x + O[x]^(n+1)]; For[i = 2, i <= n, i++, q[[i]] = q[[i-1]] q[[1]]]; vars = Variables[q[[1]]]; u[m_, r_] := Normal[(q[[r]] + O[x]^(Quotient[n, m]+1))] /. Thread[vars -> vars^m]; R = Sum[v[[2i+1]] u[2, i], {i, 1, (Length[v]-1)/2 // Floor}]; Q = Sum[v[[2i]] u[2, i-1], {i, 2, Length[v]/2 // Floor}]; T = Sum[v[[i]] Sum[EulerPhi[d] u[d, i/d], {d, Divisors[i]}]/i, {i, 3, Length[v]}]; p = O[x]^n - x^2 + (x u[1, 1] + u[2, 1] + (Q u[2, 1] - u[1, 2] + (x+R)^2/(1-Q))/2 + T)/2; Drop[ CoefficientList[p, x], 3]];
    DissectionsModDihedral[Boole[PrimeQ[#]]& /@ Range[1, 31]] (* Jean-François Alcover, Sep 25 2019, after Andrew Howroyd *)
  • PARI
    \\ number of dissections into parts defined by set.
    DissectionsModDihedral(v)={my(n=#v);
    my(q=vector(n)); q[1]=serreverse(x-sum(i=3,#v,x^i*v[i])/x + O(x*x^n));
    for(i=2, n, q[i]=q[i-1]*q[1]);
    my(vars=variables(q[1]));
    my(u(m, r)=substvec(q[r]+O(x^(n\m+1)), vars, apply(t->t^m, vars)));
    my(R=sum(i=1, (#v-1)\2, v[2*i+1]*u(2,i)), Q=sum(i=2, #v\2, v[2*i]*u(2,i-1)), T=sum(i=3, #v, my(c=v[i]); if(c, c*sumdiv(i, d, eulerphi(d)*u(d,i/d))/i)));
    my(p=O(x*x^n) - x^2 + (x*u(1,1) + u(2,1) + (Q*u(2,1) - u(1,2) + (x+R)^2/(1-Q))/2 + T)/2);
    vector(n,i,polcoeff(p,i))}
    DissectionsModDihedral(apply(v->isprime(v), [1..25]))

A290646 Number of dissections of an n-gon into 3- and 4-gons counted up to rotations and reflections.

Original entry on oeis.org

1, 2, 2, 7, 14, 53, 171, 691, 2738, 11720, 50486, 224012, 1005468, 4581815, 21093190, 98093226, 459986674, 2173599817, 10340539744, 49496519950, 238240366274, 1152543685463, 5601603835982, 27341242042238, 133977037982121, 658902522544060, 3251446102879398
Offset: 3

Views

Author

Evgeniy Krasko, Sep 03 2017

Keywords

Examples

			For a(5) = 2 the dissections of a pentagon are: a dissection into 3 triangles; a dissection into one triangle and one quadrangle.
		

Crossrefs

Cf. A001004 (counted distinctly).

Programs

  • Mathematica
    (* See A295419 for DissectionsModDihedral. *)
    DissectionsModDihedral[Boole[# == 3 || # == 4]& /@ Range[1, 30]] (* Jean-François Alcover, Sep 25 2019, after Andrew Howroyd *)
  • PARI
    \\ See A295419 for DissectionsModDihedral.
    DissectionsModDihedral(apply(v->v==3||v==4, [1..25])) \\ Andrew Howroyd, Nov 22 2017

Extensions

Terms a(16) and beyond from Andrew Howroyd, Nov 22 2017
Showing 1-2 of 2 results.