A290574 Self numbers that are the product of two self numbers greater than one.
9, 378, 400, 525, 602, 1155, 1188, 1862, 2055, 2200, 2325, 2415, 2492, 2560, 2907, 3045, 3348, 3392, 3460, 3515, 3717, 3752, 3965, 4180, 4360, 4382, 4415, 4865, 4920, 5115, 5418, 5517, 5719, 6138, 6228, 6900, 7038, 7060, 7396, 7532, 7565, 7609, 7947, 8162, 8342, 8465, 8520, 8700, 8757, 8869, 8970, 9152, 9365, 9387, 9409, 9420, 9422, 9499, 9870, 9925
Offset: 1
Examples
The product of the self numbers 31 and 75 is the self number 2325, so 2325 is in the sequence.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Block[{nn = 10^4, s}, s = Rest@ Complement[Range@ nn, Union[Table[n + Total@ IntegerDigits@ n, {n, nn}]]]; Select[Range@ nn, Function[n, And[MemberQ[s, n], AnyTrue[Map[{#, n/#} &, Rest@ TakeWhile[Divisors@ n, # <= Sqrt@ n &]], AllTrue[#, MemberQ[s, #] &] &]]]]] (* or *) Block[{nn = 5000, s}, s = Rest@ Complement[Range@ nn, Union@ Table[n + Total@ IntegerDigits@ n, {n, nn}]]; Select[Union@ Sort@ Map[Times @@ # &@ # &, Tuples[s, {2}]], MemberQ[s, #] &]] (* Michael De Vlieger, Aug 23 2017, after T. D. Noe at A003052 *)
-
PARI
is(n)=if(!is_A003052(n), return(0)); fordiv(n,d, if(d==1, next); if(d^2>n, break); if(is_A003052(d) && is_A003052(n/d), return(1))); 0 \\ Charles R Greathouse IV, Aug 23 2017
-
PARI
is_A290574(n)={is_A003052(n) && fordiv(n,d, d^2>n && break; d>1 && is_A003052(d) && is_A003052(n/d) && return(1))} \\ M. F. Hasler, Nov 09 2018
Extensions
Corrected by Charles R Greathouse IV, Aug 23 2017