cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290574 Self numbers that are the product of two self numbers greater than one.

Original entry on oeis.org

9, 378, 400, 525, 602, 1155, 1188, 1862, 2055, 2200, 2325, 2415, 2492, 2560, 2907, 3045, 3348, 3392, 3460, 3515, 3717, 3752, 3965, 4180, 4360, 4382, 4415, 4865, 4920, 5115, 5418, 5517, 5719, 6138, 6228, 6900, 7038, 7060, 7396, 7532, 7565, 7609, 7947, 8162, 8342, 8465, 8520, 8700, 8757, 8869, 8970, 9152, 9365, 9387, 9409, 9420, 9422, 9499, 9870, 9925
Offset: 1

Views

Author

Peter Weiss, Aug 06 2017

Keywords

Examples

			The product of the self numbers 31 and 75 is the self number 2325, so 2325 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Block[{nn = 10^4, s}, s = Rest@ Complement[Range@ nn, Union[Table[n + Total@ IntegerDigits@ n, {n, nn}]]]; Select[Range@ nn, Function[n, And[MemberQ[s, n], AnyTrue[Map[{#, n/#} &, Rest@ TakeWhile[Divisors@ n, # <= Sqrt@ n &]], AllTrue[#, MemberQ[s, #] &] &]]]]] (* or *)
    Block[{nn = 5000, s}, s = Rest@ Complement[Range@ nn, Union@ Table[n + Total@ IntegerDigits@ n, {n, nn}]]; Select[Union@ Sort@ Map[Times @@ # &@ # &, Tuples[s, {2}]], MemberQ[s, #] &]] (* Michael De Vlieger, Aug 23 2017, after T. D. Noe at A003052 *)
  • PARI
    is(n)=if(!is_A003052(n), return(0)); fordiv(n,d, if(d==1, next); if(d^2>n, break); if(is_A003052(d) && is_A003052(n/d), return(1))); 0 \\ Charles R Greathouse IV, Aug 23 2017
    
  • PARI
    is_A290574(n)={is_A003052(n) && fordiv(n,d, d^2>n && break; d>1 && is_A003052(d) && is_A003052(n/d) && return(1))} \\ M. F. Hasler, Nov 09 2018

Extensions

Corrected by Charles R Greathouse IV, Aug 23 2017