cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A290639 a(n) = largest number <= prime(n) such that 1 + a(1)*a(2)*...*a(n) is prime.

Original entry on oeis.org

2, 3, 5, 7, 11, 11, 16, 15, 21, 22, 30, 36, 41, 43, 34, 36, 56, 60, 48, 55, 54, 59, 57, 75, 42, 93, 93, 103, 104, 75, 126, 123, 133, 129, 148, 104, 146, 162, 159, 128, 177, 159, 153, 175, 184, 187, 193, 223, 210, 151, 164, 170, 240, 239, 254, 261, 201, 261, 253, 254, 170, 255, 297, 257, 270, 291, 309, 267, 341, 310, 261, 316, 363, 329, 373, 361, 327, 381, 373, 401, 346, 351, 379
Offset: 1

Views

Author

Thomas Ordowski, Aug 08 2017

Keywords

Comments

a(n) = prime(n) for n = 1, 2, 3, 4, 5, 13, 14, ...
If a(n) = 1 and a(n+1) > 1, then prime(n) < a(n+1) <= prime(n+1).
Conjecture: a(n) > 1 for every n. - Thomas Ordowski, Aug 08 2017
Indeed, a(n) > n for all n <= 460. - Robert Israel, Aug 08 2017

Crossrefs

Programs

  • Maple
    A[1]:= 2: P:= 2:
    for n from 2 to 200 do
      for k from ithprime(n) by -1 do
        if isprime(1+P*k) then A[n]:= k; P:= P*k; break fi
      od;
    od:
    seq(A[i],i=1..200); # Robert Israel, Aug 08 2017
  • Mathematica
    a[1] = 2; a[n_] := a[n] = Module[{k = Prime[n], r = Product[a[i], {i, 1, n - 1}]}, While[! PrimeQ[1 + k*r], k--]; k]; Array[a, 100] (* Amiram Eldar, Jan 19 2023 *)
    nxt[{n_,p_,a_}]:=Module[{k=Prime[n+1]},While[!PrimeQ[1+p*k],k--];{n+1,p*k,k}]; NestList[nxt,{1,2,2},85][[;;,3]] (* Harvey P. Dale, Jul 27 2025 *)

Extensions

More terms from Robert Israel, Aug 08 2017
Showing 1-1 of 1 results.