cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290632 Array read by antidiagonals: T(m,n) = number of minimal dominating sets in the rook graph K_m X K_n.

Original entry on oeis.org

1, 2, 2, 3, 6, 3, 4, 11, 11, 4, 5, 18, 48, 18, 5, 6, 27, 109, 109, 27, 6, 7, 38, 218, 488, 218, 38, 7, 8, 51, 405, 1409, 1409, 405, 51, 8, 9, 66, 724, 3832, 6130, 3832, 724, 66, 9, 10, 83, 1277, 10385, 21601, 21601, 10385, 1277, 83, 10
Offset: 1

Views

Author

Andrew Howroyd, Aug 07 2017

Keywords

Examples

			Array begins:
========================================================
m\n| 1  2    3     4      5       6       7        8
---|----------------------------------------------------
1  | 1  2    3     4      5       6       7        8 ...
2  | 2  6   11    18     27      38      51       66 ...
3  | 3 11   48   109    218     405     724     1277 ...
4  | 4 18  109   488   1409    3832   10385    28808 ...
5  | 5 27  218  1409   6130   21601   78132   297393 ...
6  | 6 38  405  3832  21601   92592  382465  1750240 ...
7  | 7 51  724 10385  78132  382465 1642046  7720833 ...
8  | 8 66 1277 28808 297393 1750240 7720833 33514112 ...
...
		

Crossrefs

Main diagonal is A248744.
Cf. A287274.

Programs

  • Mathematica
    T[m_, n_] := m^n + n^m - Min[m, n]! StirlingS2[Max[m, n], Min[m, n]] (* Eric W. Weisstein, Aug 10 2017 *)
  • PARI
    T(m,n) = m^n + n^m - if(n<=m, n!*stirling(m,n,2), m!*stirling(n,m,2));

Formula

T(m, n) = T(n, m).
T(n, k) = k^n + n^k - k! * stirling2(n,k) for k<=n.