cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290700 Number of minimal edge covers in the n-prism graph.

Original entry on oeis.org

1, 5, 25, 49, 141, 389, 1009, 2761, 7441, 19925, 53769, 144721, 389325, 1048325, 2821665, 7594761, 20444065, 55029413, 148124153, 398713969, 1073231821, 2888859781, 7776063377, 20931130057, 56341150641, 151655712629, 408217654249, 1098815597201
Offset: 1

Views

Author

Eric W. Weisstein, Aug 09 2017

Keywords

Comments

The n-prism graph is well defined for n >= 3. Sequence extended to n = 1 using recurrence. - Andrew Howroyd, Aug 10 2017

Crossrefs

Cf. A123304.

Programs

  • Mathematica
    Table[2 Cos[n Pi/2] + RootSum[-1 + # + #^2 + #^3 &, #^n &] -
      RootSum[1 - 2 #^2 - 2 #^3 + #^4 &, -2 #^(n + 2) - 2 #^(n + 3) + #^(n + 4) &], {n, 20}]
    LinearRecurrence[{1, 2, 6, 2, 2, -2, -2, -1, 1}, {1, 5, 25, 49, 141, 389, 1009, 2761, 7441}, 20]
    CoefficientList[Series[-( (1 + 4 x + 18 x^2 + 8 x^3 + 10 x^4 - 12 x^5 - 14 x^6 - 8 x^7 + 9 x^8)/((1 + x^2) (-1 - x - x^2 + x^3) (1 - 2 x - 2 x^2 + x^4))), {x, 0, 20}], x]
  • PARI
    Vec((1 + 4*x + 18*x^2 + 8*x^3 + 10*x^4 - 12*x^5 - 14*x^6 - 8*x^7 + 9*x^8)/((1 - 2*x - 2*x^2 + x^4)*(1 + x + x^2 - x^3)*(1 + x^2))+O(x^30)) \\ Andrew Howroyd, Aug 10 2017

Formula

From Andrew Howroyd, Aug 10 2017: (Start)
a(n) = a(n-1) + 2*a(n-2) + 6*a(n-3) + 2*a(n-4) + 2*a(n-5) - 2*a(n-6) - 2*a(n-7) - a(n-8) + a(n-9) for n > 9.
G.f.: x*(1 + 4*x + 18*x^2 + 8*x^3 + 10*x^4 - 12*x^5 - 14*x^6 - 8*x^7 + 9*x^8)/((1 - 2*x - 2*x^2 + x^4)*(1 + x + x^2 - x^3)*(1 + x^2)).
(End)

Extensions

a(1)-a(2) and terms a(9) and beyond from Andrew Howroyd, Aug 10 2017