A290700 Number of minimal edge covers in the n-prism graph.
1, 5, 25, 49, 141, 389, 1009, 2761, 7441, 19925, 53769, 144721, 389325, 1048325, 2821665, 7594761, 20444065, 55029413, 148124153, 398713969, 1073231821, 2888859781, 7776063377, 20931130057, 56341150641, 151655712629, 408217654249, 1098815597201
Offset: 1
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- Eric Weisstein's World of Mathematics, Minimal Edge Cover
- Eric Weisstein's World of Mathematics, Prism Graph
- Index entries for linear recurrences with constant coefficients, signature (1, 2, 6, 2, 2, -2, -2, -1, 1).
Crossrefs
Cf. A123304.
Programs
-
Mathematica
Table[2 Cos[n Pi/2] + RootSum[-1 + # + #^2 + #^3 &, #^n &] - RootSum[1 - 2 #^2 - 2 #^3 + #^4 &, -2 #^(n + 2) - 2 #^(n + 3) + #^(n + 4) &], {n, 20}] LinearRecurrence[{1, 2, 6, 2, 2, -2, -2, -1, 1}, {1, 5, 25, 49, 141, 389, 1009, 2761, 7441}, 20] CoefficientList[Series[-( (1 + 4 x + 18 x^2 + 8 x^3 + 10 x^4 - 12 x^5 - 14 x^6 - 8 x^7 + 9 x^8)/((1 + x^2) (-1 - x - x^2 + x^3) (1 - 2 x - 2 x^2 + x^4))), {x, 0, 20}], x]
-
PARI
Vec((1 + 4*x + 18*x^2 + 8*x^3 + 10*x^4 - 12*x^5 - 14*x^6 - 8*x^7 + 9*x^8)/((1 - 2*x - 2*x^2 + x^4)*(1 + x + x^2 - x^3)*(1 + x^2))+O(x^30)) \\ Andrew Howroyd, Aug 10 2017
Formula
From Andrew Howroyd, Aug 10 2017: (Start)
a(n) = a(n-1) + 2*a(n-2) + 6*a(n-3) + 2*a(n-4) + 2*a(n-5) - 2*a(n-6) - 2*a(n-7) - a(n-8) + a(n-9) for n > 9.
G.f.: x*(1 + 4*x + 18*x^2 + 8*x^3 + 10*x^4 - 12*x^5 - 14*x^6 - 8*x^7 + 9*x^8)/((1 - 2*x - 2*x^2 + x^4)*(1 + x + x^2 - x^3)*(1 + x^2)).
(End)
Extensions
a(1)-a(2) and terms a(9) and beyond from Andrew Howroyd, Aug 10 2017
Comments