cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290709 Number of irredundant sets in the complete tripartite graph K_{n,n,n}.

Original entry on oeis.org

4, 22, 49, 94, 169, 298, 529, 958, 1777, 3370, 6505, 12718, 25081, 49738, 98977, 197374, 394081, 787402, 1573945, 3146926, 6292777, 12584362, 25167409, 50333374, 100665169, 201328618, 402655369, 805308718, 1610615257, 3221228170, 6442453825, 12884904958
Offset: 1

Views

Author

Eric W. Weisstein, Aug 09 2017

Keywords

Comments

When n > 1, the nonempty irredundant sets are those consisting of either any number of vertices from a single partition or otherwise exactly two vertices from different partitions. - Andrew Howroyd, Aug 10 2017

Crossrefs

Cf. A290707.

Programs

  • Mathematica
    Table[If[n == 1, 4, 3 (2^n + n^2) - 2], {n, 20}]
    Join[{4}, LinearRecurrence[{5, -9, 7, -2}, {22, 49, 94, 169}, 20]]
    CoefficientList[Series[(4 + 2 x - 25 x^2 + 19 x^3 - 6 x^4)/((-1 + x)^3 (-1 + 2 x)), {x, 0, 20}], x]
  • PARI
    a(n) = if(n==1, 4, 3*(2^n + n^2) - 2); \\ Andrew Howroyd, Aug 10 2017

Formula

a(n) = 3*(2^n + n^2) - 2 for n > 1. - Andrew Howroyd, Aug 10 2017
a(n) = 5*a(n-1) - 9*a(n-2) + 7*a(n-3) - 2*a(n-4) for n > 5.
G.f.: (x (4 + 2 x - 25 x^2 + 19 x^3 - 6 x^4))/((-1 + x)^3 (-1 + 2 x)).

Extensions

a(7)-a(32) from Andrew Howroyd, Aug 10 2017