cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A295419 Number of dissections of an n-gon by nonintersecting diagonals into polygons with a prime number of sides counted up to rotations and reflections.

Original entry on oeis.org

1, 1, 2, 4, 8, 23, 64, 222, 752, 2805, 10475, 40614, 158994, 633456, 2548241, 10362685, 42485242, 175557329, 730314350, 3056971164, 12867007761, 54434131848, 231354091945, 987496927875, 4231561861914, 18198894300129, 78533356685275, 339958801585826
Offset: 3

Views

Author

Andrew Howroyd, Nov 22 2017

Keywords

Comments

a(n) first differs from A290816(n) at n=9 since this sequence does not allow the trivial dissection of a nonagon into a single nonagon.

Crossrefs

Programs

  • Mathematica
    DissectionsModDihedral[v_] := Module[{n = Length[v], q, vars, u, R, Q, T, p}, q = Table[0, {n}]; q[[1]] = InverseSeries[x - Sum[x^i v[[i]], {i, 3, Length[v]}]/x + O[x]^(n+1)]; For[i = 2, i <= n, i++, q[[i]] = q[[i-1]] q[[1]]]; vars = Variables[q[[1]]]; u[m_, r_] := Normal[(q[[r]] + O[x]^(Quotient[n, m]+1))] /. Thread[vars -> vars^m]; R = Sum[v[[2i+1]] u[2, i], {i, 1, (Length[v]-1)/2 // Floor}]; Q = Sum[v[[2i]] u[2, i-1], {i, 2, Length[v]/2 // Floor}]; T = Sum[v[[i]] Sum[EulerPhi[d] u[d, i/d], {d, Divisors[i]}]/i, {i, 3, Length[v]}]; p = O[x]^n - x^2 + (x u[1, 1] + u[2, 1] + (Q u[2, 1] - u[1, 2] + (x+R)^2/(1-Q))/2 + T)/2; Drop[ CoefficientList[p, x], 3]];
    DissectionsModDihedral[Boole[PrimeQ[#]]& /@ Range[1, 31]] (* Jean-François Alcover, Sep 25 2019, after Andrew Howroyd *)
  • PARI
    \\ number of dissections into parts defined by set.
    DissectionsModDihedral(v)={my(n=#v);
    my(q=vector(n)); q[1]=serreverse(x-sum(i=3,#v,x^i*v[i])/x + O(x*x^n));
    for(i=2, n, q[i]=q[i-1]*q[1]);
    my(vars=variables(q[1]));
    my(u(m, r)=substvec(q[r]+O(x^(n\m+1)), vars, apply(t->t^m, vars)));
    my(R=sum(i=1, (#v-1)\2, v[2*i+1]*u(2,i)), Q=sum(i=2, #v\2, v[2*i]*u(2,i-1)), T=sum(i=3, #v, my(c=v[i]); if(c, c*sumdiv(i, d, eulerphi(d)*u(d,i/d))/i)));
    my(p=O(x*x^n) - x^2 + (x*u(1,1) + u(2,1) + (Q*u(2,1) - u(1,2) + (x+R)^2/(1-Q))/2 + T)/2);
    vector(n,i,polcoeff(p,i))}
    DissectionsModDihedral(apply(v->isprime(v), [1..25]))

A290816 Number of dissections of an n-gon into polygons with odd number of sides counted up to rotations and reflections.

Original entry on oeis.org

1, 1, 2, 4, 8, 23, 65, 223, 757, 2824, 10559, 40994, 160734, 641420, 2584587, 10528305, 43237978, 178974779, 745814185, 3127246179, 13185588894, 55878618492, 237905685582, 1017225981255, 4366536472758, 18812074137141, 81320795918871, 352638701880227
Offset: 3

Views

Author

Evgeniy Krasko, Sep 03 2017

Keywords

Examples

			For a(5) = 2 the dissections of a pentagon are: a dissection into 3 triangles; a dissection into one pentagon.
		

Crossrefs

Cf. A049124 (counted distinctly).

Programs

Extensions

Terms a(16) and beyond from Andrew Howroyd, Nov 22 2017

A111757 Number of bipartite 2-connected outerplanar graphs on n unlabeled nodes.

Original entry on oeis.org

0, 1, 0, 1, 0, 2, 0, 4, 0, 13, 0, 48, 0, 238, 0, 1325, 0, 8297, 0, 54519, 0, 373363, 0, 2621872, 0, 18797682, 0, 136969519, 0, 1011903735, 0, 7564219361, 0, 57129086391, 0, 435394899361, 0, 3345082819597, 0, 25885718422329, 0, 201619294539406, 0, 1579629974876090
Offset: 1

Views

Author

Stefan Vigerske, Nov 21 2005

Keywords

Comments

Also the number of bipartite (unlabeled) dissections of a polygon.

Crossrefs

Even bisection gives A290722.

Programs

  • PARI
    \\ See A295419 for DissectionsModDihedral.
    {my(N=50); DissectionsModDihedral(vector(N, n, n%2==0)) + vector(N, n, n==2)} \\ Andrew Howroyd, Feb 12 2021

Formula

Generating function and cycle index sum known, see Vigerske.

Extensions

Terms a(21) and beyond from Andrew Howroyd, Feb 12 2021
Showing 1-3 of 3 results.