A290724 Triangle read by rows: T(n,k) = number of arrangements of k non-attacking rooks on an n X n right triangular board with every square controlled by at least one rook.
1, 1, 1, 0, 4, 1, 0, 2, 11, 1, 0, 0, 18, 26, 1, 0, 0, 6, 100, 57, 1, 0, 0, 0, 96, 444, 120, 1, 0, 0, 0, 24, 900, 1734, 247, 1, 0, 0, 0, 0, 600, 6480, 6246, 502, 1, 0, 0, 0, 0, 120, 8520, 39762, 21320, 1013, 1, 0, 0, 0, 0, 0, 4320, 90600, 219312, 70128, 2036, 1
Offset: 1
Examples
Triangle begins: 1; 1, 1; 0, 4, 1; 0, 2, 11, 1; 0, 0, 18, 26, 1; 0, 0, 6, 100, 57, 1; 0, 0, 0, 96, 444, 120, 1; 0, 0, 0, 24, 900, 1734, 247, 1; 0, 0, 0, 0, 600, 6480, 6246, 502, 1; 0, 0, 0, 0, 120, 8520, 39762, 21320, 1013, 1; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
- Eric Weisstein's World of Mathematics, Maximal Independent Vertex Set
Programs
-
Mathematica
CoefficientList[Table[Sum[k! StirlingS2[m, k] StirlingS2[n + 1 - m, k + 1] x^(n - k), {m, 0, n}, {k, 0, Min[m, n - m]}], {n, 20}]/x, x] // Flatten (* Eric W. Weisstein, Feb 01 2024 *)
Comments