cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290744 Maximum number of distinct Lyndon factors that can appear in words of length n over an alphabet of size 5.

Original entry on oeis.org

5, 6, 8, 11, 15, 19, 24, 30, 37, 45, 53, 62, 72, 83, 95, 107, 120, 134, 149, 165, 181, 198, 216, 235, 255, 275, 296, 318, 341, 365, 389, 414, 440, 467, 495, 523, 552, 582, 613, 645, 677, 710, 744, 779, 815, 851, 888, 926, 965, 1005, 1045, 1086, 1128, 1171, 1215
Offset: 1

Views

Author

N. J. A. Sloane, Aug 11 2017

Keywords

Crossrefs

Programs

  • PARI
    a(n)=(s->my(m=n\s, p=n%s); binomial(n+1, 2)-(s-p)*binomial(m+1, 2)-p*binomial(m+2, 2)+s)(5); \\ Andrew Howroyd, Aug 14 2017

Formula

a(n) = binomial(n+1,2) - (s-p)*binomial(m+1,2) - p*binomial(m+2,2) + s where s=5, m=floor(n/s), p=n-m*s. - Andrew Howroyd, Aug 14 2017
Conjectures from Colin Barker, Oct 03 2017: (Start)
G.f.: x*(5 - 4*x + x^2 + x^3 + x^4 - 5*x^5 + 5*x^6) / ((1 - x)^3*(1 + x + x^2 + x^3 + x^4)).
a(n) = 2*a(n-1) - a(n-2) + a(n-5) - 2*a(n-6) + a(n-7) for n>6.
(End)

Extensions

a(11)-a(55) from Andrew Howroyd, Aug 14 2017