cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290760 Matula-Goebel numbers of transitive rooted identity trees (or transitive finitary sets).

Original entry on oeis.org

1, 2, 6, 30, 78, 330, 390, 870, 1410, 3198, 3390, 4290, 7878, 9570, 10230, 11310, 13026, 15510, 15990, 18330, 26070, 30966, 37290, 39390, 40890, 44070, 45210, 65130, 84810, 94830, 98310, 104610, 122070, 124410, 132990, 154830, 159330, 175890, 198330, 201630
Offset: 1

Views

Author

Gus Wiseman, Oct 19 2017

Keywords

Comments

A rooted tree is transitive if every terminal subtree is a branch of the root. A finitary set is transitive if every element is also a subset.

Examples

			Let o = {}. The sequence of transitive finitary sets begins:
1     o
2     {o}
6     {o,{o}}
30    {o,{o},{{o}}}
78    {o,{o},{o,{o}}}
330   {o,{o},{{o}},{{{o}}}}
390   {o,{o},{{o}},{o,{o}}}
870   {o,{o},{{o}},{o,{{o}}}}
1410  {o,{o},{{o}},{{o},{{o}}}}
3198  {o,{o},{o,{o}},{{o,{o}}}}
3390  {o,{o},{{o}},{o,{o},{{o}}}}
4290  {o,{o},{{o}},{{{o}}},{o,{o}}}
7878  {o,{o},{o,{o}},{o,{o,{o}}}}
9570  {o,{o},{{o}},{{{o}}},{o,{{o}}}}
10230 {o,{o},{{o}},{{{o}}},{{{{o}}}}}
11310 {o,{o},{{o}},{o,{o}},{o,{{o}}}}
13026 {o,{o},{o,{o}},{{o},{o,{o}}}}
15510 {o,{o},{{o}},{{{o}}},{{o},{{o}}}}
15990 {o,{o},{{o}},{o,{o}},{{o,{o}}}}
18330 {o,{o},{{o}},{o,{o}},{{o},{{o}}}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    finitaryQ[n_]:=finitaryQ[n]=Or[n===1,With[{m=primeMS[n]},{UnsameQ@@m,finitaryQ/@m}]/.List->And];
    subprimes[n_]:=If[n===1,{},Union@@Cases[FactorInteger[n],{p_,_}:>FactorInteger[PrimePi[p]][[All,1]]]];
    transitaryQ[n_]:=Divisible[n,Times@@subprimes[n]];
    nn=100000;Fold[Select,Range[nn],{finitaryQ,transitaryQ}]