A290760 Matula-Goebel numbers of transitive rooted identity trees (or transitive finitary sets).
1, 2, 6, 30, 78, 330, 390, 870, 1410, 3198, 3390, 4290, 7878, 9570, 10230, 11310, 13026, 15510, 15990, 18330, 26070, 30966, 37290, 39390, 40890, 44070, 45210, 65130, 84810, 94830, 98310, 104610, 122070, 124410, 132990, 154830, 159330, 175890, 198330, 201630
Offset: 1
Keywords
Examples
Let o = {}. The sequence of transitive finitary sets begins: 1 o 2 {o} 6 {o,{o}} 30 {o,{o},{{o}}} 78 {o,{o},{o,{o}}} 330 {o,{o},{{o}},{{{o}}}} 390 {o,{o},{{o}},{o,{o}}} 870 {o,{o},{{o}},{o,{{o}}}} 1410 {o,{o},{{o}},{{o},{{o}}}} 3198 {o,{o},{o,{o}},{{o,{o}}}} 3390 {o,{o},{{o}},{o,{o},{{o}}}} 4290 {o,{o},{{o}},{{{o}}},{o,{o}}} 7878 {o,{o},{o,{o}},{o,{o,{o}}}} 9570 {o,{o},{{o}},{{{o}}},{o,{{o}}}} 10230 {o,{o},{{o}},{{{o}}},{{{{o}}}}} 11310 {o,{o},{{o}},{o,{o}},{o,{{o}}}} 13026 {o,{o},{o,{o}},{{o},{o,{o}}}} 15510 {o,{o},{{o}},{{{o}}},{{o},{{o}}}} 15990 {o,{o},{{o}},{o,{o}},{{o,{o}}}} 18330 {o,{o},{{o}},{o,{o}},{{o},{{o}}}}
Programs
-
Mathematica
primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; finitaryQ[n_]:=finitaryQ[n]=Or[n===1,With[{m=primeMS[n]},{UnsameQ@@m,finitaryQ/@m}]/.List->And]; subprimes[n_]:=If[n===1,{},Union@@Cases[FactorInteger[n],{p_,_}:>FactorInteger[PrimePi[p]][[All,1]]]]; transitaryQ[n_]:=Divisible[n,Times@@subprimes[n]]; nn=100000;Fold[Select,Range[nn],{finitaryQ,transitaryQ}]
Comments