cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290811 Numbers n such that (6n-1, 6n+1), (12n-1, 12n+1) and (18n-1, 18n+1) are 3 pairs of twin primes.

Original entry on oeis.org

1, 8925, 70070, 70385, 270725, 355040, 566650, 866635, 874335, 1091545, 1230740, 1295980, 1586095, 1594285, 1738380, 1974210, 2201325, 2427145, 2436665, 3124660, 3349990, 3599470, 3661350, 4059825, 4101790, 4486020, 4726540, 5139680, 5613370, 5898655, 6279035
Offset: 1

Views

Author

Amiram Eldar, Aug 11 2017

Keywords

Comments

If n is in the sequence then (6n+1)*(12n+1)*(18n+1) is a Carmichael number (A002997) and (6n-1)*(12n-1)*(18n-1) is a Lucas-Carmichael number (A006972).
Intersection of A046025 and A290810.
The first 10 pairs of corresponding Lucas-Carmichael and Carmichael numbers ((6n-1)*(12n-1)*(18n-1), (6n+1)*(12n+1)*(18n+1)) are:
(935, 1729)
(921329139943799, 921392227198801)
(445860973748310119, 445864862313790921)
(451901165073782759, 451905088679976961)
(25715181770344848599, 25715239817629143601)
(58001133699332691839, 58001233533626759041)
(235803065459494289399, 235803319764534509401)
(843555229160685647759, 843555823997214441961)
(866240412591524160959, 866241018045184403161)
(1685504102154302331719, 1685505045798928055521)
(2416038446298343361039, 2416039645957333860241)

Examples

			1 is in the sequence since (6*1 - 1, 6*1 + 1) = (5, 7), (12*1 - 1, 12*1 + 1) = (11, 13) and (18*1 - 1, 18*1 + 1) = (17, 19) are all pairs of twin primes.
		

Crossrefs

Programs

  • Mathematica
    seq = {}; Do[ If[ AllTrue[{6 m - 1, 6 m + 1, 12 m - 1, 12 m + 1, 18 m - 1,
        18 m + 1}, PrimeQ ], AppendTo[seq, m]], {m, 1, 10^7} ]; seq
    Select[Range[6280000],AllTrue[{6#+1,6#-1,12#+1,12#-1,18#+1,18#-1},PrimeQ]&] (* Harvey P. Dale, Jun 21 2024 *)
  • PARI
    isok(n) = isprime(6*n-1) && isprime(6*n+1) && isprime(12*n-1) && isprime(12*n+1) && isprime(18*n-1) && isprime(18*n+1); \\ Michel Marcus, Aug 11 2017