cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290843 Numbers k such that the sum of digits of k^3 is 4^3 = 64.

Original entry on oeis.org

1192, 1366, 1426, 1435, 1753, 1786, 1813, 1816, 1912, 1942, 1999, 2116, 2389, 2395, 2398, 2413, 2566, 2599, 2632, 2635, 2653, 2692, 2713, 2872, 2899, 2992, 3022, 3031, 3103, 3199, 3289, 3295, 3298, 3301, 3355, 3361, 3382, 3394, 3409, 3415, 3442, 3466, 3475
Offset: 1

Views

Author

Seiichi Manyama, Aug 12 2017

Keywords

Examples

			1192^3 = 1693669888, 1 + 6 + 9 + 3 + 6 + 6 + 9 + 8 + 8 + 8 = 64 = 4^3.
11*(10^(n+2) + 1) is a term for all n > 0. - _Altug Alkan_, Aug 12 2017
		

Crossrefs

Numbers k such that sum of digits of k^3 is m^3: A107679 (m=2), A290842 (m=3), this sequence (m=4), A159462 (m=5), A159463 (m=6).
Cf. A067075.

Programs

  • Mathematica
    Select[Range[3500],Total[IntegerDigits[#^3]]==64&] (* Harvey P. Dale, Aug 04 2019 *)
  • PARI
    isok(n) = sumdigits(n^3) == 64; \\ Altug Alkan, Aug 12 2017