A290847 Number of dominating sets in the n-triangular graph.
1, 7, 57, 973, 32057, 2079427, 267620753, 68649126489, 35172776136145, 36025104013571583, 73784683970720501897, 302228664636911612364581, 2475873390079769597467385417, 40564787539999607393632514635067, 1329227699017403425105119604848703905
Offset: 2
Keywords
Links
- Eric Weisstein's World of Mathematics, Dominating Set
- Eric Weisstein's World of Mathematics, Johnson Graph
- Eric Weisstein's World of Mathematics, Triangular Graph
Programs
-
Mathematica
b[n_]:=Sum[(-1)^(n - k)*Binomial[n, k]*2^Binomial[k, 2], {k, 0, n}]; a[n_]:=b[n] + n*b[n - 1]; Table[a[n], {n, 2, 20}] (* Indranil Ghosh, Aug 12 2017 *)
-
PARI
\\ here b(n) is A006129 b(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*2^binomial(k, 2)); a(n) = b(n) + n*b(n-1);
-
Python
from sympy import binomial def b(n): return sum((-1)**(n - k)*binomial(n, k)*2**binomial(k, 2) for k in range(n + 1)) def a(n): return b(n) + n*b(n - 1) print([a(n) for n in range(2, 21)]) # Indranil Ghosh, Aug 13 2017
Comments