cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290847 Number of dominating sets in the n-triangular graph.

Original entry on oeis.org

1, 7, 57, 973, 32057, 2079427, 267620753, 68649126489, 35172776136145, 36025104013571583, 73784683970720501897, 302228664636911612364581, 2475873390079769597467385417, 40564787539999607393632514635067, 1329227699017403425105119604848703905
Offset: 2

Views

Author

Andrew Howroyd, Aug 12 2017

Keywords

Comments

A dominating set on the triangular graph corresponds with an edge cover on the complete graph with optionally one vertex removed.

Crossrefs

Programs

  • Mathematica
    b[n_]:=Sum[(-1)^(n - k)*Binomial[n, k]*2^Binomial[k, 2], {k, 0, n}]; a[n_]:=b[n] + n*b[n - 1]; Table[a[n], {n, 2, 20}] (* Indranil Ghosh, Aug 12 2017 *)
  • PARI
    \\ here b(n) is A006129
    b(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*2^binomial(k, 2));
    a(n) = b(n) + n*b(n-1);
    
  • Python
    from sympy import binomial
    def b(n): return sum((-1)**(n - k)*binomial(n, k)*2**binomial(k, 2) for k in range(n + 1))
    def a(n): return b(n) + n*b(n - 1)
    print([a(n) for n in range(2, 21)]) # Indranil Ghosh, Aug 13 2017

Formula

a(n) = A006129(n) + n * A006129(n-1).
a(n) = 2^binomial(n,2) - Sum_{k=2..n} binomial(n,k)*A006129(n-k).