cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290867 Irregular triangle read by rows: the number of points that are the intersections of k semicircles in the configuration A290447(n).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 5, 0, 15, 0, 35, 0, 70, 0, 123, 1, 0, 195, 5, 0, 285, 15, 0, 420, 25, 0, 586, 39, 2, 0, 818, 53, 4, 0, 1110, 73, 6, 0, 1451, 103, 10, 0, 1846, 142, 18, 0, 2361, 181, 26, 0, 2956, 234, 33, 2, 0, 3704, 287, 40, 4, 0, 4567, 348, 49, 8
Offset: 1

Views

Author

David Applegate, Aug 12 2017

Keywords

Comments

Row lengths are A290726(n).
The first entry of each row is 0, because an intersection requires at least 2 lines.
The first row with 3 entries is for n=9, because that is the first configuration with a nontrivial intersection.
Row sums give A290447.

Examples

			Triangle begins:
  0;
  0;
  0;
  0,   1;
  0,   5;
  0,  15;
  0,  35;
  0,  70;
  0, 123,   1;
  0, 195,   5;
  0, 285,  15;
  0, 420,  25;
  0, 586,  39,   2;
		

Crossrefs

Formula

Sum_{k} T(n,k) * binomial(k,2) = binomial(n,4), because there are binomial(n,4) total pairs of semicircles, and an intersection of k consists of binomial(k,2) of those pairs.
A290865(n) = binomial(n,2) + Sum_{k} T(n,k) * (k-1).