A290890
p-INVERT of the positive integers, where p(S) = 1 - S^2.
Original entry on oeis.org
0, 1, 4, 11, 28, 72, 188, 493, 1292, 3383, 8856, 23184, 60696, 158905, 416020, 1089155, 2851444, 7465176, 19544084, 51167077, 133957148, 350704367, 918155952, 2403763488, 6293134512, 16475640049, 43133785636, 112925716859, 295643364940, 774004377960
Offset: 0
(See the examples at A289780.)
-
z = 60; s = x/(1 - x)^2; p = 1 - s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290890 *)
A372883
Irregular triangle read by rows: T(n,k) is the number of flattened Catalan words of length n with exactly k symmetric peaks, with k >= 0.
Original entry on oeis.org
1, 2, 4, 1, 9, 5, 23, 17, 1, 63, 51, 8, 176, 149, 39, 1, 491, 439, 153, 11, 1362, 1308, 540, 70, 1, 3762, 3912, 1812, 342, 14, 10369, 11671, 5935, 1439, 110, 1, 28559, 34637, 19175, 5541, 645, 17, 78653, 102222, 61302, 20214, 3170, 159, 1, 216638, 300190, 194080, 71242, 13903, 1089, 20
Offset: 1
The irregular triangle begins:
1;
2;
4, 1;
9, 5;
23, 17, 1;
63, 51, 8;
176, 149, 39, 1;
491, 439, 153, 11;
1362, 1308, 540, 70, 1;
3762, 3912, 1812, 342, 14;
...
T(4,1) = 5 since there are 5 flattened Catalan words of length 4 with 1 symmetric peak: 0100, 0101, 0010, 0110, and 0121.
- Jean-Luc Baril, Pamela E. Harris, and José L. Ramírez, Flattened Catalan Words, arXiv:2405.05357 [math.CO], 2024. See pp. 21-22.
-
T[n_,k_]:=SeriesCoefficient[x(1-x)(1-2x)/(1-5x+8x^2-5x^3-x^2y+2x^3y),{x,0,n},{y,0,k}]; Table[T[n,k],{n,14},{k,0,Floor[(n-1)/2]}]//Flatten
Showing 1-2 of 2 results.
Comments