cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A369328 Antidiagonal sums of A369326.

Original entry on oeis.org

1, 2, 4, 9, 23, 63, 176, 491, 1362, 3762, 10369, 28559, 78653, 216638, 596761, 1643966, 4528932, 12476737, 34372059, 94691059, 260862508, 718644363, 1979777046, 5454042866, 15025219777, 41392641187, 114031662049, 314143279634, 865426307713, 2384143611738, 6568023995156
Offset: 0

Views

Author

Stefano Spezia, Jan 20 2024

Keywords

Crossrefs

Cf. A369326.
First column of A372883.

Programs

  • Mathematica
    LinearRecurrence[{5,-8,5},{1,1,2,4},31]

Formula

G.f.: (1 - 4*x + 5*x^2 - 3*x^3)/(1 - 5*x + 8*x^2 - 5*x^3).
a(n) = 5*a(n-1) - 8*a(n-2) + 5*a(n-3) for n > 3.

A372879 Irregular triangle read by rows: T(n,k) is the number of flattened Catalan words of length n with exactly k short peak, with k >= 0.

Original entry on oeis.org

1, 2, 4, 1, 9, 5, 22, 18, 1, 56, 58, 8, 145, 178, 41, 1, 378, 532, 173, 11, 988, 1563, 656, 73, 1, 2585, 4535, 2327, 381, 14, 6766, 13030, 7888, 1726, 114, 1, 17712, 37140, 25872, 7124, 709, 17, 46369, 105156, 82758, 27534, 3739, 164, 1, 121394, 296040, 259542, 101350, 17632, 1184, 20
Offset: 1

Views

Author

Stefano Spezia, May 15 2024

Keywords

Examples

			The irregular triangle begins:
    1;
    2;
    4,    1;
    9,    5;
   22,   18,   1;
   56,   58,   8;
  145,  178,  41,  1;
  378,  532, 173, 11;
  988, 1563, 656, 73, 1;
  ...
T(6,2) = 8 since there are 8 flattened Catalan words of length 6 with 2 short peaks: 001010, 010100, 010101, 010010, 010120, 010121, 012010, and 012121.
		

Crossrefs

Cf. A007051 (row sums), A055588, A371965, A372883, A372884.

Programs

  • Mathematica
    T[n_,k_]:=SeriesCoefficient[x(1-2x)/((1-x)(1-3x+x^2(1-y))),{x,0,n},{y,0,k}]; Table[T[n,k],{n,14},{k,0,Floor[(n-1)/2]}]//Flatten

Formula

G.f.: x*(1 - 2*x)/((1 - x)*(1 - 3*x + x^2*(1 - y))).
T(n,0) = A055588(n-1).
Sum_{k>=0} T(n,k) = A007051(n-1).

A372884 a(n) is the sum of all symmetric peaks in the set of flattened Catalan words of length n.

Original entry on oeis.org

1, 5, 19, 67, 230, 778, 2602, 8618, 28303, 92275, 298949, 963253, 3089020, 9864896, 31388260, 99545572, 314779181, 992765041, 3123577735, 9806581175, 30727287586, 96104495110, 300081382574, 935547839662, 2912554595035, 9055397013503, 28119390725977, 87217771234633
Offset: 3

Views

Author

Stefano Spezia, May 15 2024

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{9,-30,46,-33,9},{1,5,19,67,230},28]

Formula

From Baril et al.: (Start)
G.f.: (1 - 2*x)^2*x^3/((1 - 3*x)^2*(1 - x)^3).
a(n) = (63 + 3^n + 2*(3^n - 45)*n + 18*n^2)/144. (End)
E.g.f.: (exp(3*x)*(1 + 6*x) + 9*exp(x)*(7 - 8*x + 2*x^2) - 64)/144.
Showing 1-3 of 3 results.