cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290910 a(n) = (1/5)*A290909(n), n>= 0.

Original entry on oeis.org

0, 1, 4, 15, 60, 240, 956, 3809, 15180, 60495, 241080, 960736, 3828664, 15257745, 60804180, 242312895, 965649716, 3848244944, 15335777460, 61115150865, 243552156060, 970588338271, 3867926023024, 15414209227200, 61427712082800, 244797754857825
Offset: 0

Views

Author

Clark Kimberling, Aug 18 2017

Keywords

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(1 - x)^2; p = 1 - 5 s^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
    u = Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290909 *)
    u/5 (* A290910 *)
    LinearRecurrence[{4,-1,4,-1},{0,1,4,15},30] (* Harvey P. Dale, Feb 19 2018 *)
  • PARI
    concat([0], Vec(1/(1 - 4*x + x^2 - 4*x^3 + x^4) + O(x^30))) \\ Andrew Howroyd, Feb 26 2018

Formula

G.f.: x/(1 - 4 x + x^2 - 4 x^3 + x^4).
a(n) = 4*a(n-1) - a(n-2) + 4*a(n-3) - a(n-4).
a(n) = (1/5)*A290909(n) for n >= 0.