cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290938 Number of dominating sets in the n-gear graph.

Original entry on oeis.org

5, 23, 83, 291, 1015, 3539, 12339, 43043, 150239, 524723, 1833771, 6412467, 22437095, 78553491, 275180323, 964534339, 3382685743, 11869824179, 41673547291, 146387820371, 514484547639, 1809077492883, 6364347723667, 22400458807139, 78878848178815, 277881197881011
Offset: 1

Views

Author

Eric W. Weisstein, Aug 14 2017

Keywords

Comments

Extended to a(1)-a(2) using the formula/recurrence.

Crossrefs

Cf. A290378 (minimal dominating sets).

Programs

  • Mathematica
    Table[(1/2 (3 - Sqrt[17]))^n + (1/2 (3 + Sqrt[17]))^n - 1 + RootSum[-1 - # - 3 #^2 + #^3 &, #^n &], {n, 20}] // Expand
    LinearRecurrence[{7, -12, -2, 3, 3, 2}, {5, 23, 83, 291, 1015, 3539}, 20]
    CoefficientList[Series[(-5 + 12 x + 18 x^2 + 4 x^3 - 5 x^4 - 8 x^5)/(-1 + 7 x - 12 x^2 - 2 x^3 + 3 x^4 + 3 x^5 + 2 x^6), {x, 0, 20}], x]

Formula

a(n) = 7*a(n-1) - 12*a(n-2) - 2*a(n-3) + 3*a(n-4) + 3*a(n-5) + 2*a(n-6).
G.f.: (x (-5 + 12 x + 18 x^2 + 4 x^3 - 5 x^4 - 8 x^5))/(-1 + 7 x - 12 x^2 - 2 x^3 + 3 x^4 + 3 x^5 + 2 x^6).