A290378 Number of minimal dominating sets in the n-gear graph.
2, 8, 8, 16, 37, 80, 156, 304, 602, 1173, 2290, 4456, 8686, 16892, 32833, 63776, 123864, 240524, 467060, 907061, 1761894, 3423164, 6652706, 12933280, 25151787, 48931280, 95228360, 185400336, 361093444, 703546005, 1371282460, 2673742784, 5215147858
Offset: 1
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- Eric Weisstein's World of Mathematics, Gear Graph
- Eric Weisstein's World of Mathematics, Minimal Dominating Set
- Index entries for linear recurrences with constant coefficients, signature (4, -3, -4, 4, -1, 1, 3, -3, 0, 2, 3, 0, -1).
Programs
-
Mathematica
Table[RootSum[-1 - # - #^2 + #^3 &, #^n &] + RootSum[1 - 2 # - #^2 + 3 #^3 - #^4 - 2 #^5 + #^6 &, #^n &] - LucasL[n] - 2 Cos[n Pi/2], {n, 20}] LinearRecurrence[{4, -3, -4, 4, -1, 1, 3, -3, 0, 2, 3, 0, -1}, {2, 8, 8, 16, 37, 80, 156, 304, 602, 1173, 2290, 4456, 8686}, 20] CoefficientList[Series[(2 - 18 x^2 + 16 x^3 + 21 x^4 - 18 x^5 - 15 x^6 - 2 x^7 + 16 x^8 + 2 x^9 + 11 x^10 - 2 x^11 - 5 x^12)/((1 + x^2) (1 - x - x^2) (1 - x - x^2 - x^3) (1 - 2 x - x^2 + 3 x^3 - x^4 - 2 x^5 + x^6)), {x, 0, 20}], x]
-
PARI
Vec((2 - 18*x^2 + 16*x^3 + 21*x^4 - 18*x^5 - 15*x^6 - 2*x^7 + 16*x^8 + 2*x^9 + 11*x^10 - 2*x^11 - 5*x^12)/((1 + x^2)*(1 - x - x^2)*(1 - x - x^2 - x^3)*(1 - 2*x - x^2 + 3*x^3 - x^4 - 2*x^5 + x^6)) + O(x^30)) \\ Andrew Howroyd, Aug 27 2017
Formula
From Andrew Howroyd, Aug 27 2017: (Start)
a(n) = 4*a(n-1) - 3*a(n-2) - 4*a(n-3) + 4*a(n-4) - a(n-5) + a(n-6) + 3*a(n-7) - 3*a(n-8) + 2*a(n-10) + 3*a(n-11) - a(n-13) for n > 13.
G.f.: x*(2 - 18*x^2 + 16*x^3 + 21*x^4 - 18*x^5 - 15*x^6 - 2*x^7 + 16*x^8 + 2*x^9 + 11*x^10 - 2*x^11 - 5*x^12)/((1 + x^2)*(1 - x - x^2)*(1 - x - x^2 - x^3)*(1 - 2*x - x^2 + 3*x^3 - x^4 - 2*x^5 + x^6)).
(End)
Extensions
a(13)-a(24) from Andrew Howroyd, Aug 11 2017
a(1)-a(2) and terms a(25) and beyond from Andrew Howroyd, Aug 27 2017
Comments