cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A290589 Number of irredundant sets in the n-gear graph.

Original entry on oeis.org

41, 113, 320, 908, 2574, 7317, 20855, 59582, 170681, 490180, 1411207, 4072092, 11774998, 34114389, 99006951, 287783255, 837649471, 2441108294, 7121588680, 20795782761, 60775937523, 177746557324, 520168686310, 1523090681155, 4461852378404, 13076323061624
Offset: 3

Views

Author

Eric W. Weisstein, Aug 07 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{41}, Table[2^(n - 4) n + LucasL[n] + RootSum[-1 - # - 2 #^2 + #^3 &, #^n &] - RootSum[-1 - # - #^2 - #^3 + #^4 &, #^n &] + RootSum[1 - 2 # - #^2 + 4 #^3 - #^4 - 3 #^5 + #^6 &, #^n &], {n, 4, 10}]] (* Eric W. Weisstein, Sep 04 2025 *)
    Join[{41}, LinearRecurrence[{11, -45, 74, 1, -140, 100, 58, -49, 19, -57, -4, 40, -2, -7, -11, 0, 4}, {113, 320, 908, 2574, 7317, 20855, 59582, 170681, 490180, 1411207, 4072092, 11774998, 34114389, 99006951, 287783255, 837649471, 2441108294}, 20]] (* Eric W. Weisstein, Sep 04 2025 *)
    CoefficientList[Series[(-41 + 338 x - 922 x^2 + 561 x^3 + 1417 x^4 - 1810 x^5 - 406 x^6 + 820 x^7 - 297 x^8 + 950 x^9 - 135 x^10 - 664 x^11 + 180 x^12 + 172 x^13 + 154 x^14 - 37 x^15 - 70 x^16 + 6 x^17)/((-1 + 2 x)^2 (-1 + x + x^2) (-1 + 2 x + x^2 + x^3) (-1 + x + x^2 + x^3 + x^4) (1 - 3 x - x^2 + 4 x^3 - x^4 - 2 x^5 + x^6)), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 04 2025 *)

Formula

a(n) = 11*a(n-1)-45*a(n-2)+74*a(n-3)+a(n-4)-140*a(n-5)+100*a(n-6)+58*a(n-7)-49*a(n-8)+19*a(n-9)-57*a(n-10)-4*a(n-11)+40*a(n-12)-2*a(n-13)-7*a(n-14)-11*a(n-15)+4*a(n-17) for n > 20. - Eric W. Weisstein, Sep 04 2025
G.f.: x^3*(-41+338*x-922*x^2+561*x^3+1417*x^4-1810*x^5-406*x^6+820*x^7-297*x^8+950*x^9-135*x^10-664*x^11+180*x^12+172*x^13+154*x^14-37*x^15-70*x^16+6*x^17)/((-1+2*x)^2*(-1+x+x^2)*(-1+2*x+x^2+x^3)*(-1+x+x^2+x^3+x^4)*(1-3*x-x^2+4*x^3-x^4-2*x^5+x^6)). - Eric W. Weisstein, Sep 04 2025

Extensions

a(13)-a(16) from Andrew Howroyd, Aug 11 2017
Missing a(12) inserted and a(17)-a(18) added by Andrew Howroyd, Aug 27 2017
More terms from Christian Sievers, Nov 18 2023

A290938 Number of dominating sets in the n-gear graph.

Original entry on oeis.org

5, 23, 83, 291, 1015, 3539, 12339, 43043, 150239, 524723, 1833771, 6412467, 22437095, 78553491, 275180323, 964534339, 3382685743, 11869824179, 41673547291, 146387820371, 514484547639, 1809077492883, 6364347723667, 22400458807139, 78878848178815, 277881197881011
Offset: 1

Views

Author

Eric W. Weisstein, Aug 14 2017

Keywords

Comments

Extended to a(1)-a(2) using the formula/recurrence.

Crossrefs

Cf. A290378 (minimal dominating sets).

Programs

  • Mathematica
    Table[(1/2 (3 - Sqrt[17]))^n + (1/2 (3 + Sqrt[17]))^n - 1 + RootSum[-1 - # - 3 #^2 + #^3 &, #^n &], {n, 20}] // Expand
    LinearRecurrence[{7, -12, -2, 3, 3, 2}, {5, 23, 83, 291, 1015, 3539}, 20]
    CoefficientList[Series[(-5 + 12 x + 18 x^2 + 4 x^3 - 5 x^4 - 8 x^5)/(-1 + 7 x - 12 x^2 - 2 x^3 + 3 x^4 + 3 x^5 + 2 x^6), {x, 0, 20}], x]

Formula

a(n) = 7*a(n-1) - 12*a(n-2) - 2*a(n-3) + 3*a(n-4) + 3*a(n-5) + 2*a(n-6).
G.f.: (x (-5 + 12 x + 18 x^2 + 4 x^3 - 5 x^4 - 8 x^5))/(-1 + 7 x - 12 x^2 - 2 x^3 + 3 x^4 + 3 x^5 + 2 x^6).

A303226 Number of minimal total dominating sets in the n-gear graph.

Original entry on oeis.org

0, 6, 12, 6, 30, 30, 56, 110, 156, 306, 506, 870, 1560, 2652, 4692, 8190, 14280, 25122, 43890, 77006, 135056, 236682, 415380, 728462, 1278030, 2242506, 3934272, 6903756, 12113880, 21256710, 37301556, 65456190, 114864806, 201569006, 353722056, 620732310
Offset: 1

Views

Author

Eric W. Weisstein, Apr 20 2018

Keywords

Comments

Sequence extrapolated to n=1 using recurrence. - Andrew Howroyd, Apr 20 2018

Crossrefs

Programs

  • Mathematica
    Table[RootSum[-1 - # + #^3 &, #^n &] + RootSum[-1 + # - 2 #^2 + #^3 &, #^n &] + 2 RootSum[-1 + #^2 + #^3 &, #^(n + 2) (1 + #) &], {n, 20}]
    LinearRecurrence[{1, 2, 1, -3, -1, -1, 0, 0, 1}, {0, 6, 12, 6, 30, 30, 56, 110, 156}, 20]
    CoefficientList[Series[-2 x (3 + 3 x - 9 x^2 - 3 x^3 - 3 x^4 + x^5 + 6 x^7)/(-1 + x + 2 x^2 + x^3 - 3 x^4 - x^5 - x^6 + x^9), {x, 0, 20}], x]
  • PARI
    concat([0], Vec(2*(3 + 3*x - 9*x^2 - 3*x^3 - 3*x^4 + x^5 + 6*x^7)/((1 - 2*x + x^2 - x^3)*(1 + x - x^3)*(1 - x^2 - x^3)) + O(x^40))) \\ Andrew Howroyd, Apr 20 2018

Formula

From Andrew Howroyd, Apr 20 2018: (Start)
a(n) = a(n-1) + 2*a(n-2) + a(n-3) - 3*a(n-4) - a(n-5) - a(n-6) + a(n-9) for n > 9.
G.f.: 2*x^2*(3 + 3*x - 9*x^2 - 3*x^3 - 3*x^4 + x^5 + 6*x^7)/((1 - 2*x + x^2 - x^3)*(1 + x - x^3)*(1 - x^2 - x^3)).
(End)

Extensions

a(1)-a(2) and terms a(11) and beyond from Andrew Howroyd, Apr 20 2018
Showing 1-3 of 3 results.