A290943 Number of ways to write n as an ordered sum of 3 generalized pentagonal numbers (A001318).
1, 3, 6, 7, 6, 6, 7, 12, 12, 12, 9, 6, 12, 12, 18, 13, 12, 18, 12, 18, 12, 13, 18, 12, 24, 12, 12, 24, 21, 30, 12, 18, 18, 12, 24, 18, 19, 18, 24, 24, 18, 24, 36, 24, 18, 19, 18, 24, 24, 30, 18, 12, 36, 30, 24, 21, 18, 36, 24, 36, 24, 12, 36, 36, 36, 18, 25, 30, 24, 24, 24, 30, 24, 36, 30, 24
Offset: 0
Examples
a(6) = 7 because we have [5, 1, 0], [5, 0, 1], [2, 2, 2], [1, 5, 0], [1, 0, 5], [0, 5, 1] and [0, 1, 5].
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
- Ilya Gutkovskiy, Extended graphical example
- Zhi-Wei Sun, A result similar to Lagrange's theorem, J. Number Theory 162(2016), 190-211.
- Eric Weisstein's World of Mathematics, Pentagonal Number
- Index to sequences related to polygonal numbers
Crossrefs
Programs
-
Maple
N:= 100; bds:= [fsolve(k*(3*k-1)/2 = N)]; G:= add(x^(k*(3*k-1)/2),k=floor(min(bds))..ceil(max(bds)))^3: seq(coeff(G,x,n),n=0..N); # Robert Israel, Aug 16 2017
-
Mathematica
nmax = 75; CoefficientList[Series[Sum[x^(k (3 k - 1)/2), {k, -nmax, nmax}]^3, {x, 0, nmax}], x] nmax = 75; CoefficientList[Series[Sum[x^((6 k^2 + 6 k + (-1)^(k + 1) (2 k + 1) + 1)/16), {k, 0, nmax}]^3, {x, 0, nmax}], x] nmax = 75; CoefficientList[Series[EllipticTheta[4, 0, x^3]^3/QPochhammer[x, x^2]^3, {x, 0, nmax}], x]
Formula
G.f.: (Sum_{k=-infinity..infinity} x^(k*(3*k-1)/2))^3.
G.f.: (Sum_{k>=0} x^A001318(k))^3.
G.f.: Product_{n >= 1} ( (1 - q^(3*n))/(1 - q^n + q^(2*n)) )^3. - Peter Bala, Jan 04 2025
Comments