cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290989 Expansion of x^6*(1 + x^3)/(1 - 4*x + 5*x^2 - x^3 - 2*x^4 + x^6 + x^7 - 2*x^8 + x^9).

Original entry on oeis.org

1, 4, 11, 26, 55, 109, 208, 389, 722, 1339, 2488, 4634, 8646, 16146, 30160, 56333, 105198, 196413, 366672, 684475, 1277701, 2385080, 4452277, 8311254, 15515091, 28963012, 54067156, 100930660, 188413624, 351723304, 656583197
Offset: 6

Views

Author

R. J. Mathar, Aug 16 2017

Keywords

Comments

This corresponds to S(213,1,x) of Langley if one uses Theorem 8. Note that all three expressions for S(213;t,x), S(213;1,x) and the series on page 22 are mutually incompatible, so we show the sequence one would most likely see in other publications.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( x^6*(1+x^3)/((1-x)*(1-2*x+x^3-x^4)*(1-x+x^4)) )); // G. C. Greubel, Apr 12 2023
    
  • Mathematica
    DeleteCases[#, 0] &@ CoefficientList[Series[x^6*(1+x^3)/(1 -4x +5x^2 -x^3 -2x^4 +x^6 +x^7 -2x^8 +x^9), {x, 0, 36}], x] (* Michael De Vlieger, Aug 16 2017 *)
    LinearRecurrence[{4,-5,1,2,0,-1,-1,2,-1}, {1,4,11,26,55,109,208,389,722}, 80] (* Vincenzo Librandi, Aug 17 2017 *)
  • SageMath
    def A290989_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x^6*(1+x^3)/((1-x)*(1-x+x^4)*(1-2*x+x^3-x^4)) ).list()
    a=A290989_list(50); a[6:] # G. C. Greubel, Apr 12 2023

Formula

G.f.: x^6*(1 + x)*(1 - x + x^2)/((1 - x)*(1 - 2*x + x^3 - x^4)*(1 - x + x^4)).
a(n) = -2 + (1/19)*( 9*A099530(n+1) + 15*A099530(n) + 2*A099530(n-1) - A099530(n- 2) + 10*A059633(n+4) - 6*A059633(n+3) - 16*A059633(n+2) - A059633(n+1) ). - G. C. Greubel, Apr 12 2023