cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290990 p-INVERT of the nonnegative integers (A000027), where p(S) = 1 - S - S^2.

Original entry on oeis.org

0, 1, 2, 5, 12, 28, 64, 145, 328, 743, 1686, 3830, 8704, 19781, 44950, 102133, 232048, 527208, 1197808, 2721421, 6183108, 14048151, 31917714, 72517738, 164761792, 374342057, 850512458, 1932380869, 4390407092, 9975090996, 22663602720, 51492150953
Offset: 0

Views

Author

Clark Kimberling, Aug 21 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A290890 for a guide to related sequences.

Crossrefs

Programs

  • Magma
    I:=[0,1,2,5]; [n le 4 select I[n] else 4*Self(n-1) -5*Self(n-2) +2*Self(n-3) +Self(n-4): n in [1..50]]; // G. C. Greubel, Apr 12 2023
    
  • Mathematica
    z = 60; s = x^2/(1-x)^2; p = 1 -s -s^2;
    Drop[CoefficientList[Series[s, {x,0,z}], x], 1] (* A000027 *)
    Drop[CoefficientList[Series[1/p, {x,0,z}], x], 1]  (* A290990 *)
    LinearRecurrence[{4,-5,2,1}, {0,1,2,5}, 50] (* G. C. Greubel, Apr 12 2023 *)
  • PARI
    concat(0, Vec(x*(1-2*x+2*x^2)/(1-4*x+5*x^2-2*x^3-x^4) + O(x^50))) \\ Colin Barker, Aug 24 2017
    
  • SageMath
    @CachedFunction
    def a(n): # a = A290990
        if (n<4): return (0,1,2,5)[n]
        else: return 4*a(n-1) -5*a(n-2) +2*a(n-3) +a(n-4)
    [a(n) for n in range(51)] # G. C. Greubel, Apr 12 2023

Formula

a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3) + a(n-4).
G.f.: x*(1 - 2*x + 2*x^2) / (1 - 4*x + 5*x^2 - 2*x^3 - x^4). - Colin Barker, Aug 24 2017