A290997 p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - S^3 - S^6.
0, 0, 1, 3, 6, 12, 27, 63, 143, 315, 684, 1479, 3195, 6903, 14932, 32361, 70266, 152775, 332397, 723330, 1573829, 3423444, 7444722, 16185939, 35185779, 76483890, 166253545, 361396431, 785621808, 1707884880, 3712912632, 8071922817, 17548551692, 38150905170
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-15,21,-18,9,-1).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 40); [0,0] cat Coefficients(R!( x^2*(1-3*x+3*x^2)/(1-6*x+15*x^2-21*x^3 + 18*x^4-9*x^5+x^6) )); // G. C. Greubel, Apr 14 2023 -
Mathematica
z = 60; s = x/(1-x); p= 1 -s^3 -s^6; Drop[CoefficientList[Series[s, {x,0,z}], x], 1] (* A000012 *) Drop[CoefficientList[Series[1/p, {x,0,z}], x], 1] (* A290997 *) LinearRecurrence[{6,-15,21,-18,9,-1}, {0,0,1,3,6,12}, 40] (* G. C. Greubel, Apr 14 2023 *)
-
PARI
concat(vector(2), Vec(x^2*(1-3*x+3*x^2)/(1-6*x+15*x^2-21*x^3 + 18*x^4-9*x^5+x^6) + O(x^50))) \\ Colin Barker, Aug 22 2017
-
SageMath
def A290997_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( x^2*(1-3*x+3*x^2)/(1-6*x+15*x^2-21*x^3 + 18*x^4-9*x^5+x^6) ).list() A290997_list(40) # G. C. Greubel, Apr 14 2023
Formula
a(n) = 6*a(n-1) - 15*a(n-2) + 21*a(n-3) - 18*a(n-4) + 9*a(n-5) - a(n-6) for n >= 7.
G.f.: x^2*(1 - 3*x + 3*x^2) / (1 - 6*x + 15*x^2 - 21*x^3 + 18*x^4 - 9*x^5 + x^6). - Colin Barker, Aug 22 2017
Comments