A291000
p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - S - S^2 - S^3.
Original entry on oeis.org
1, 3, 9, 26, 74, 210, 596, 1692, 4804, 13640, 38728, 109960, 312208, 886448, 2516880, 7146144, 20289952, 57608992, 163568448, 464417728, 1318615104, 3743926400, 10630080640, 30181847168, 85694918912, 243312448256, 690833811712, 1961475291648, 5569190816256
Offset: 0
-
z = 60; s = x/(1 - x); p = 1 - s - s^2 - s^3;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000012 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291000 *)
A290998
p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - S^3 - S^4.
Original entry on oeis.org
0, 0, 1, 4, 10, 21, 43, 92, 205, 462, 1035, 2301, 5099, 11303, 25088, 55728, 123800, 274969, 610628, 1355970, 3011157, 6686979, 14850196, 32978725, 73237462, 162641499, 361184653, 802098203, 1781254927, 3955712256, 8784625824, 19508406192, 43323176177
Offset: 0
From _Enrique Navarrete_, Dec 25 2023: (Start)
Since there are binomial(3,3) = 1 type of 3, binomial(4,3) = 4 types of 4, binomial(5,3) = 10 types of 5, binomial(6,3) = 20 types of 6, and binomial(9,3) = 84 types of 9, we can write 9 in the following ways:
9 in 84 ways;
6+3 in 20 ways;
5+4 in 40 ways;
4+5 in 40 ways;
3+6 in 20 ways;
3+3+3 in 1 way, for a total of 205 ways. (End)
-
I:=[0,0,1,4]; [n le 4 select I[n] else 4*Self(n-1) -6*Self(n-2) +5*Self(n-3) -Self(n-4): n in [1..41]]; // G. C. Greubel, Apr 25 2023
-
z = 60; s = x/(1 - x); p = 1 - s^3 - s^4;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000012 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* this sequence *)
LinearRecurrence[{4,-6,5,-1}, {0,0,1,4}, 41] (* G. C. Greubel, Apr 25 2023 *)
-
concat(vector(2), Vec(x^2 / (1 - 4*x + 6*x^2 - 5*x^3 + x^4) + O(x^50))) \\ Colin Barker, Aug 22 2017
-
def A290998_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( x^2/(1-4*x+6*x^2-5*x^3+x^4) ).list()
A290998_list(40) # G. C. Greubel, Apr 25 2023
A290999
p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - 6*S^2.
Original entry on oeis.org
0, 6, 12, 54, 168, 606, 2052, 7134, 24528, 84726, 292092, 1007814, 3476088, 11991246, 41362932, 142682094, 492178848, 1697768166, 5856430572, 20201701974, 69685556808, 240379623486, 829187031012, 2860272179454, 9866479513968, 34034319925206, 117401037420252
Offset: 0
-
[n le 2 select 6*(n-1) else 2*Self(n-1) +5*Self(n-2): n in [1..41]]; // G. C. Greubel, Apr 25 2023
-
z = 60; s = x/(1 - x); p = 1 - s^6;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000012 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290999 *)
LinearRecurrence[{2,5},{0,6},30] (* Harvey P. Dale, Mar 25 2018 *)
-
A290999=BinaryRecurrenceSequence(2,5,0,6)
[A290999(n) for n in range(41)] # G. C. Greubel, Apr 25 2023
Showing 1-3 of 3 results.
Comments