A290998 p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - S^3 - S^4.
0, 0, 1, 4, 10, 21, 43, 92, 205, 462, 1035, 2301, 5099, 11303, 25088, 55728, 123800, 274969, 610628, 1355970, 3011157, 6686979, 14850196, 32978725, 73237462, 162641499, 361184653, 802098203, 1781254927, 3955712256, 8784625824, 19508406192, 43323176177
Offset: 0
Examples
From _Enrique Navarrete_, Dec 25 2023: (Start) Since there are binomial(3,3) = 1 type of 3, binomial(4,3) = 4 types of 4, binomial(5,3) = 10 types of 5, binomial(6,3) = 20 types of 6, and binomial(9,3) = 84 types of 9, we can write 9 in the following ways: 9 in 84 ways; 6+3 in 20 ways; 5+4 in 40 ways; 4+5 in 40 ways; 3+6 in 20 ways; 3+3+3 in 1 way, for a total of 205 ways. (End)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,5,-1).
Programs
-
Magma
I:=[0,0,1,4]; [n le 4 select I[n] else 4*Self(n-1) -6*Self(n-2) +5*Self(n-3) -Self(n-4): n in [1..41]]; // G. C. Greubel, Apr 25 2023
-
Mathematica
z = 60; s = x/(1 - x); p = 1 - s^3 - s^4; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000012 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* this sequence *) LinearRecurrence[{4,-6,5,-1}, {0,0,1,4}, 41] (* G. C. Greubel, Apr 25 2023 *)
-
PARI
concat(vector(2), Vec(x^2 / (1 - 4*x + 6*x^2 - 5*x^3 + x^4) + O(x^50))) \\ Colin Barker, Aug 22 2017
-
SageMath
def A290998_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( x^2/(1-4*x+6*x^2-5*x^3+x^4) ).list() A290998_list(40) # G. C. Greubel, Apr 25 2023
Formula
a(n) = 4*a(n-1) - 6*a(n-2) + 5*a(n-3) - a(n-4) for n >= 5.
G.f.: x^2 / (1 - 4*x + 6*x^2 - 5*x^3 + x^4). - Colin Barker, Aug 22 2017
G.f.: 1/(x*(1-Sum_{k>=3} binomial(k,3)*x^k)) - 1/x. - Enrique Navarrete, Dec 26 2023
Comments