A290999 p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - 6*S^2.
0, 6, 12, 54, 168, 606, 2052, 7134, 24528, 84726, 292092, 1007814, 3476088, 11991246, 41362932, 142682094, 492178848, 1697768166, 5856430572, 20201701974, 69685556808, 240379623486, 829187031012, 2860272179454, 9866479513968, 34034319925206, 117401037420252
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,5).
Programs
-
Magma
[n le 2 select 6*(n-1) else 2*Self(n-1) +5*Self(n-2): n in [1..41]]; // G. C. Greubel, Apr 25 2023
-
Mathematica
z = 60; s = x/(1 - x); p = 1 - s^6; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000012 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290999 *) LinearRecurrence[{2,5},{0,6},30] (* Harvey P. Dale, Mar 25 2018 *)
-
SageMath
A290999=BinaryRecurrenceSequence(2,5,0,6) [A290999(n) for n in range(41)] # G. C. Greubel, Apr 25 2023
Formula
G.f.: 6*x/(1 - 2*x - 5*x^2).
a(n) = 2*a(n-1) + 5*a(n-2) for n >= 3.
a(n) = 6*A002532(n).
a(n) = sqrt(3/2)*((1+sqrt(6))^n - (1-sqrt(6))^n). - Colin Barker, Aug 23 2017
Comments