A291022 Even numbers m such that every odd divisor > 1 of m is the sum of two divisors.
6, 12, 18, 20, 24, 30, 36, 40, 42, 48, 54, 80, 96, 100, 108, 140, 150, 156, 160, 162, 192, 198, 200, 220, 264, 272, 280, 294, 312, 320, 324, 342, 384, 396, 400, 440, 486, 500, 510, 520, 528, 544, 546, 560, 624, 640, 684, 702, 714, 750, 768, 798, 800, 880, 912
Offset: 1
Keywords
Examples
42 is in the sequence because the divisors are {1, 2, 3, 6, 7, 14, 21, 42} and 3 = 2 + 1, 7 = 6 + 1 and 21 = 14 + 7.
Programs
-
Maple
with(numtheory):EV:=array(1..100):OD:=array(1..100):nn:=5*10^4: for n from 2 by 2 to nn do: d:=divisors(n):n1:=nops(d):k0:=0:k1:=0:it:=0: for i from 1 to n1 do: if irem(d[i],2)=0 then k0:=k0+1:EV[k0]:=d[i]: else k1:=k1+1:OD[k1]:=d[i]: fi: od: for j from 2 to k1 do: for k from 1 to k1 do: for l from 1 to k0 do: if OD[j]=OD[k]+EV[l] then it:=it+1: else fi: od: od: od: if it>0 and it = k1-1 then printf(`%d, `,n): else fi: od:
Comments