A291044 Irregular triangle read by rows: number of maximal irredundant sets of size k in the n-cycle graph.
0, 2, 0, 3, 0, 0, 6, 0, 0, 10, 0, 0, 9, 2, 0, 0, 0, 14, 0, 0, 0, 8, 6, 0, 0, 0, 3, 27, 0, 0, 0, 0, 60, 2, 0, 0, 0, 0, 33, 33, 0, 0, 0, 0, 9, 84, 6, 0, 0, 0, 0, 0, 91, 52, 0, 0, 0, 0, 0, 14, 196, 2, 0, 0, 0, 0, 0, 3, 280, 60, 0, 0, 0, 0, 0, 0, 200, 272, 6
Offset: 2
Examples
Triangle begins: 0, 2; 0, 3; 0, 0, 6; 0, 0, 10; 0, 0, 9 2; 0, 0, 0, 14; 0, 0, 0, 8, 6; 0, 0, 0, 3, 27; 0, 0, 0, 0, 60, 2; 0, 0, 0, 0, 33, 33; 0, 0, 0, 0, 9, 84, 6; 0, 0, 0, 0, 0, 91, 52; 0, 0, 0, 0, 0, 14, 196, 2; ... As polynomials these are 2*x; 3*x; 6*x^2; 10*x^2; 9*x^2 + 2*x^3; etc.
Links
- Andrew Howroyd, Table of n, a(n) for n = 2..991
- Eric Weisstein's World of Mathematics, Cycle Graph.
- Eric Weisstein's World of Mathematics, Maximal Irredundant Set.
Crossrefs
Row sums are A286954.
Formula
T(n,k) = 0 for k < ceiling(n/3).
Sum_{k=0..floor(n/2)} T(n,k) = A286954(n). - Eric W. Weisstein, Jun 11 2021
Comments