A291049 Primes of the form 2^r * 17^s + 1.
2, 3, 5, 17, 137, 257, 65537, 157217, 295937, 557057, 1336337, 96550277, 1212153857, 2281701377, 5473632257, 395469930497, 1401249857537, 2637646790657, 4964982194177, 28572702478337, 1271035441709057, 38280596832649217, 1872540629620228097, 6634884445436379137
Offset: 1
Keywords
Examples
With n = 1, a(1) = 2^0 * 17^0 + 1 = 2. With n = 5, a(5) = 2^3 * 17^1 + 1 = 137. list of (r,s): (0,0), (1,0), (2,0), (4,0), (3,1), (8,0), (16,0), (5,3), (10,2), (15,1), (4,4), (2,6).
Links
- Robert Israel, Table of n, a(n) for n = 1..625
Crossrefs
Programs
-
GAP
K:=26*10^7+1;; # to get all terms <= K. A:=Filtered(Filtered([1,3..K],i-> i mod 6=5),IsPrime);; I:=[17];; B:=List(A,i->Elements(Factors(i-1)));; C:=List([0..Length(I)],j->List(Combinations(I,j),i->Concatenation([2],i)));; A291049:=Concatenation([2,3],List(Set(Flat(List([1..Length(C)],i->List([1..Length(C[i])],j->Positions(B,C[i][j]))))),i->A[i]));
-
Maple
N:= 10^20: # to get all terms <= N+1 S:= NULL: for r from 0 to ilog2(N) do for s from 0 to floor(log[17](N/2^r)) do p:= 2^r*17^s +1; if isprime(p) then S:= S, p fi od od: sort([S]); # Robert Israel, Sep 26 2017
-
Mathematica
With[{nn = 10^19, q = 17}, Select[Sort@ Flatten@ Table[2^i*q^j + 1, {i, 0, Log[2, nn]}, {j, 0, Log[q, nn/2^i]}], PrimeQ]] (* Michael De Vlieger, Sep 18 2017, after Robert G. Wilson v at A005109 *)
-
PARI
lista(nn) = my(t, v=List([])); for(r=0, logint(nn, 2), t=2^r; for(s=0, logint(nn\t, 17), if(isprime(t+1), listput(v, t+1)); t*=17)); Vec(vecsort(v)) \\ Jinyuan Wang, Jun 26 2022
Comments