cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291053 Number of maximal irredundant sets in the n-Andrásfai graph.

Original entry on oeis.org

2, 10, 28, 88, 217, 493, 989, 1794, 3016, 4785, 7256, 10612, 15067, 20869, 28303, 37694, 49410, 63865, 81522, 102896, 128557, 159133, 195313, 237850, 287564, 345345, 412156, 489036, 577103, 677557, 791683, 920854, 1066534, 1230281, 1413750, 1618696, 1846977, 2100557
Offset: 1

Views

Author

Eric W. Weisstein, Aug 17 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Piecewise[{{2, n == 1}, {10, n == 2}, {28, n == 3}}, (-3120 + 10932 n - 4970 n^2 + 765 n^3 - 10 n^4 + 3 n^5)/120], {n, 20}]
    Join[{2, 10, 28}, LinearRecurrence[{6, -15, 20, -15, 6, -1}, {88, 217, 493, 989, 1794, 3016}, 20]] (* Eric W. Weisstein, Aug 21 2017 *)
    CoefficientList[Series[(2 - 2 x - 2 x^2 + 30 x^3 - 61 x^4 + 89 x^5 - 112 x^6 + 77 x^7 - 18 x^8)/(-1 + x)^6, {x, 0, 20}], x] (* Eric W. Weisstein, Aug 21 2017 *)

Formula

From Eric W. Weisstein, Aug 21 2017: (Start)
a(n) = (-3120 + 10932*n - 4970*n^2 + 765*n^3 - 10*n^4 + 3*n^5)/120 for n > 3.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n > 9.
G.f.: (x (2 - 2 x - 2 x^2 + 30 x^3 - 61 x^4 + 89 x^5 - 112 x^6 + 77 x^7 - 18 x^8))/(-1 + x)^6.
(End)

Extensions

a(9)-a(20) from Andrew Howroyd, Aug 19 2017
a(21) and above from Eric W. Weisstein, Aug 21 2017