cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291055 Number of maximal irredundant sets in the n-path graph.

Original entry on oeis.org

1, 2, 2, 4, 6, 8, 13, 17, 27, 40, 57, 86, 122, 184, 269, 395, 582, 849, 1255, 1843, 2708, 3982, 5841, 8597, 12631, 18566, 27286, 40082, 58929, 86598, 127279, 187052, 274872, 404001, 593732, 872606, 1282416, 1884660, 2769856, 4070718, 5982611, 8792345
Offset: 1

Views

Author

Eric W. Weisstein, Aug 17 2017

Keywords

Comments

From Andrew Howroyd, Aug 23 2017: (Start)
The minimum size of a maximal irredundant set, the irredundance number, is given by ceiling(n/3). A suitable construction for such a set is every third vertex starting with the second if n is a multiple of 3, otherwise starting with the first.
The maximum size of an irredundant set, the upper irredundance number, is given by ceiling(n/2). A suitable construction for such a set is every second vertex starting with the first.
(End)

Examples

			Case n=5: maximal irredundant sets represented as binary words are {00110, 01001, 01010, 01100, 10010, 10101}, so a(5)=6. - _Andrew Howroyd_, Aug 23 2017
		

Crossrefs

Row 1 of A291439.
Row sums of A291375.

Programs

  • Mathematica
    Rest @ CoefficientList[Series[x (1 + 2 x + x^2 + x^3 + x^4 - x^5 - x^6 - 2 x^7 + 3 x^9 - x^12 - x^13)/(1 - x^2 - x^3 - x^4 - x^5 + x^7 + 2 x^8 + x^9 - 2 x^10 - x^11 + x^14), {x, 0, 42}], x] (* Michael De Vlieger, Aug 24 2017 *)
    LinearRecurrence[{0, 1, 1, 1, 1, 0, -1, -2, -1, 2, 1, 0, 0, -1}, {1, 2, 2, 4, 6, 8, 13, 17, 27, 40, 57, 86, 122, 184}, 20] (* Eric W. Weisstein, Aug 28 2017 *)
    RootSum[1 - #^3 - 2 #^4 + #^5 + 2 #^6 + #^7 - #^9 - #^10 - #^11 - #^12 + #^14 &, -4480566127993567 #^n + 2115784835595702 #^(n+1) - 8803686900182082 #^(n+2) + 12438105918248674 #^(n+3) + 9975829435558087 #^(n+4) + 32647411155695559 #^(n+5) + 921201586573742 #^(n+6) - 12400355965941932 #^(n+7) - 18709447182799197 #^(n+8) - 16194871035876814 #^(n+9) - 8478829128434826 #^(n+10) - 3824486277258301 #^(n+11) + 902031297001609 #^(n+12) + 11119370357865554 #^(n+13) &]/333325507942333403 (* Eric W. Weisstein, Aug 28 2017 *)
  • PARI
    Vec((1 + 2*x + x^2 + x^3 + x^4 - x^5 - x^6 - 2*x^7 + 3*x^9 - x^12 - x^13)/(1 - x^2 - x^3 - x^4 - x^5 + x^7 + 2*x^8 + x^9 - 2*x^10 - x^11 + x^14)+O(x^40)) \\ Andrew Howroyd, Aug 23 2017

Formula

From Andrew Howroyd, Aug 23 2017: (Start)
a(n) = a(n-2) + a(n-3) + a(n-4) + a(n-5) - a(n-7) - 2*a(n-8) - a(n-9) + 2*a(n-10) + a(n-11) - a(n-14) for n > 14.
G.f.: x*(1 + 2*x + x^2 + x^3 + x^4 - x^5 - x^6 - 2*x^7 + 3*x^9 - x^12 - x^13)/(1 - x^2 - x^3 - x^4 - x^5 + x^7 + 2*x^8 + x^9 - 2*x^10 - x^11 + x^14).
(End)

Extensions

Terms a(21) and beyond from Andrew Howroyd, Aug 23 2017