A291066 Number of edges in the n-Menger sponge graph.
24, 672, 14976, 311808, 6334464, 127475712, 2555805696, 51166445568, 1023731564544, 20477852516352, 409582820130816, 8191862561046528, 163838900488372224, 3276791203906977792, 65535929631255822336, 1310719437050046578688, 26214395496400372629504, 524287963971202981036032
Offset: 1
Examples
The level 1 Menger sponge graph can be formed by subdividing every edge of a cube graph. This produces a graph with 24 edges, so a(1) = 24.
Links
- Allan Bickle, Degrees of Menger and Sierpinski Graphs, Congr. Num. 227 (2016) 197-208.
- Allan Bickle, MegaMenger Graphs, The College Mathematics Journal, 49 1 (2018) 20-26.
- Eric Weisstein's World of Mathematics, Edge Count
- Eric Weisstein's World of Mathematics, Maximal Clique
- Eric Weisstein's World of Mathematics, Maximum Clique
- Eric Weisstein's World of Mathematics, Menger Sponge Graph
- Index entries for linear recurrences with constant coefficients, signature (28, -160).
Crossrefs
Programs
-
Mathematica
Table[2^(2 n + 1) (5^n - 2^n), {n, 20}] LinearRecurrence[{28, -160}, {24, 672}, 20] CoefficientList[Series[24/(1 - 28 x + 160 x^2), {x, 0, 20}], x]
-
PARI
a(n)=2*(20^n-8^n) \\ Charles R Greathouse IV, Nov 29 2022
-
Python
def A291066(n): return (5**n-(1<
Chai Wah Wu, Nov 27 2023
Formula
a(n) = 2^(2*n + 1)*(5^n - 2^n).
a(n) = 28*a(n-1) - 160*a(n-2).
G.f.: (24 x)/(1 - 28 x + 160 x^2).
a(n) = 2 * (20^n - 8^n). - Allan Bickle, Nov 28 2022
a(n) = 20*a(n-1) + 24*8^(n-1). - Allan Bickle, Nov 28 2022
Comments