A291102 Number of maximal irredundant sets in the n-pan graph.
2, 2, 3, 7, 9, 13, 19, 24, 39, 63, 87, 124, 183, 272, 405, 593, 867, 1261, 1869, 2760, 4046, 5936, 8712, 12817, 18861, 27720, 40711, 59792, 87915, 129250, 189946, 279118, 410135, 602803, 886008, 1302157, 1913622, 2812220, 4133091, 6074385, 8927330, 13119959
Offset: 1
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..500
- Eric Weisstein's World of Mathematics, Maximal Irredundant Set
- Eric Weisstein's World of Mathematics, Pan Graph
- Index entries for linear recurrences with constant coefficients, signature (0, 1, 1, 1, 1, 0, -1, -2, -1, 2, 1, 0, 0, -1).
Programs
-
Mathematica
Table[-RootSum[1 - #^3 - 2 #^4 + #^5 + 2 #^6 + #^7 - #^9 - #^10 - #^11 - #^12 + #^14 &, 500851004670498 #^(n+1) - 3689002954543242 #^(n+2) - 4674357321032747 #^(n+3) - 11682114439256677 #^(n+4) + 4235991226348286 #^(n+5) + 7038537508218316 #^(n+6) + 7181640141870472 #^(n+7) + 1546373234795414 #^(n+8) - 8648457478830123 #^(n+9) - 8135065519248445 #^(n+10) - 4540890555566032 #^(n+11) - 5314826024895471 #^(n+12) - 1546564184442276 #^(n+13) + 6933486092556085 #^(n+14) &]/47617929706047629, {n, 20}] LinearRecurrence[{0, 1, 1, 1, 1, 0, -1, -2, -1, 2, 1, 0, 0, -1}, {2, 2, 3, 7, 9, 13, 19, 24, 39, 63, 87, 124, 183, 272}, 20] CoefficientList[Series[(2 + 2 x + x^2 + 3 x^3 + 2 x^4 - x^5 - 2 x^6 - 6 x^7 - 3 x^8 + 7 x^9 + 3 x^10 - x^11 - 4 x^13)/(1 - x^2 - x^3 - x^4 - x^5 + x^7 + 2 x^8 + x^9 - 2 x^10 - x^11 + x^14), {x, 0, 20}], x]
-
PARI
Vec((2 + 2*x + x^2 + 3*x^3 + 2*x^4 - x^5 - 2*x^6 - 6*x^7 - 3*x^8 + 7*x^9 + 3*x^10 - x^11 - 4*x^13)/(1 - x^2 - x^3 - x^4 - x^5 + x^7 + 2*x^8 + x^9 - 2*x^10 - x^11 + x^14)+O(x^40)) \\ Andrew Howroyd, Aug 23 2017
Formula
From Andrew Howroyd, Aug 23 2017: (Start)
a(n) = a(n-2) + a(n-3) + a(n-4) + a(n-5) - a(n-7) - 2*a(n-8) - a(n-9) + 2*a(n-10) + a(n-11) - a(n-14) for n > 14.
G.f.: x*(2 + 2*x + x^2 + 3*x^3 + 2*x^4 - x^5 - 2*x^6 - 6*x^7 - 3*x^8 + 7*x^9 + 3*x^10 - x^11 - 4*x^13)/(1 - x^2 - x^3 - x^4 - x^5 + x^7 + 2*x^8 + x^9 - 2*x^10 - x^11 + x^14).
(End)
Extensions
a(1)-a(2) and terms a(21) and beyond from Andrew Howroyd, Aug 23 2017
Comments