cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291102 Number of maximal irredundant sets in the n-pan graph.

Original entry on oeis.org

2, 2, 3, 7, 9, 13, 19, 24, 39, 63, 87, 124, 183, 272, 405, 593, 867, 1261, 1869, 2760, 4046, 5936, 8712, 12817, 18861, 27720, 40711, 59792, 87915, 129250, 189946, 279118, 410135, 602803, 886008, 1302157, 1913622, 2812220, 4133091, 6074385, 8927330, 13119959
Offset: 1

Views

Author

Eric W. Weisstein, Aug 17 2017

Keywords

Comments

Sequence extended to a(1)-a(2) using the formula/recurrence. - Andrew Howroyd, Aug 23 2017

Crossrefs

Programs

  • Mathematica
    Table[-RootSum[1 - #^3 - 2 #^4 + #^5 + 2 #^6 + #^7 - #^9 - #^10 - #^11 - #^12 + #^14 &, 500851004670498 #^(n+1) - 3689002954543242 #^(n+2) - 4674357321032747 #^(n+3) - 11682114439256677 #^(n+4) + 4235991226348286 #^(n+5) + 7038537508218316 #^(n+6) + 7181640141870472 #^(n+7) + 1546373234795414 #^(n+8) - 8648457478830123 #^(n+9) - 8135065519248445 #^(n+10) - 4540890555566032 #^(n+11) - 5314826024895471 #^(n+12) - 1546564184442276 #^(n+13) + 6933486092556085 #^(n+14) &]/47617929706047629, {n, 20}]
    LinearRecurrence[{0, 1, 1, 1, 1, 0, -1, -2, -1, 2, 1, 0, 0, -1}, {2, 2, 3, 7, 9, 13, 19, 24, 39, 63, 87, 124, 183, 272}, 20]
    CoefficientList[Series[(2 + 2 x + x^2 + 3 x^3 + 2 x^4 - x^5 - 2 x^6 - 6 x^7 - 3 x^8 + 7 x^9 + 3 x^10 - x^11 - 4 x^13)/(1 - x^2 - x^3 - x^4 - x^5 + x^7 + 2 x^8 + x^9 - 2 x^10 - x^11 + x^14), {x, 0, 20}], x]
  • PARI
    Vec((2 + 2*x + x^2 + 3*x^3 + 2*x^4 - x^5 - 2*x^6 - 6*x^7 - 3*x^8 + 7*x^9 + 3*x^10 - x^11 - 4*x^13)/(1 - x^2 - x^3 - x^4 - x^5 + x^7 + 2*x^8 + x^9 - 2*x^10 - x^11 + x^14)+O(x^40)) \\ Andrew Howroyd, Aug 23 2017

Formula

From Andrew Howroyd, Aug 23 2017: (Start)
a(n) = a(n-2) + a(n-3) + a(n-4) + a(n-5) - a(n-7) - 2*a(n-8) - a(n-9) + 2*a(n-10) + a(n-11) - a(n-14) for n > 14.
G.f.: x*(2 + 2*x + x^2 + 3*x^3 + 2*x^4 - x^5 - 2*x^6 - 6*x^7 - 3*x^8 + 7*x^9 + 3*x^10 - x^11 - 4*x^13)/(1 - x^2 - x^3 - x^4 - x^5 + x^7 + 2*x^8 + x^9 - 2*x^10 - x^11 + x^14).
(End)

Extensions

a(1)-a(2) and terms a(21) and beyond from Andrew Howroyd, Aug 23 2017