A291111 Number of endofunctions on [n] such that the LCM of their cycle lengths equals five.
0, 0, 0, 0, 0, 24, 864, 24192, 653184, 18144000, 531365184, 16563076992, 551172885120, 19580825392128, 741547690884000, 29873618711000064, 1277121733631347968, 57795924098354577408, 2762004604309125452928, 139058300756829929472000, 7359536118308288021017344
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..387
Crossrefs
Column k=5 of A222029.
Programs
-
Maple
b:= proc(n, m) option remember; (k-> `if`(m>k, 0, `if`(n=0, `if`(m=k, 1, 0), add(b(n-j, ilcm(m, j)) *binomial(n-1, j-1)*(j-1)!, j=1..n))))(5) end: a:= n-> add(b(j, 1)*n^(n-j)*binomial(n-1, j-1), j=0..n): seq(a(n), n=0..22);
-
Mathematica
b[n_, m_] := b[n, m] = With[{k = 5}, If[m > k, 0, If[n == 0, If[m == k, 1, 0], Sum[b[n-j, LCM[m, j]] Binomial[n-1, j-1] (j-1)!, {j, 1, n}]]]]; a[n_] := If[n == 0, 0, Sum[b[j, 1] n^(n-j) Binomial[n-1, j-1], {j, 0, n}]]; a /@ Range[0, 22] (* Jean-François Alcover, Dec 29 2020, after Alois P. Heinz *)
Formula
a(n) ~ (2*exp(6/5)-exp(1)) * n^(n-1). - Vaclav Kotesovec, Aug 18 2017