A291127 Consider the zeros of the polynomial P(m,x) whose coefficients are the divisors of a number m. The sequence lists the numbers m such that P(m,x) contains at least two zeros that are purely imaginary numbers.
6, 8, 10, 14, 15, 21, 22, 26, 27, 33, 34, 35, 38, 39, 42, 46, 51, 54, 55, 57, 58, 62, 65, 66, 69, 74, 77, 78, 82, 85, 86, 87, 88, 91, 93, 94, 95, 102, 104, 106, 110, 111, 114, 115, 118, 119, 122, 123, 125, 128, 129, 130, 133, 134, 136, 138, 141, 142, 143, 145
Offset: 1
Keywords
Examples
42 is in the sequence because P(42,x) = 1 + 2x + 3x^2 + 6x^3 + 7x^4 + 14x^5 + 21x^6 + 42x^7 = (1 + 2*x)*(1 + 3*x^2)*(1 + 7*x^4), and the seven zeros are -1/2, +(1/3)*sqrt(3)*i, -(1/3)*sqrt(3)*i, r*(1+i), r*(1-i), r*(-1+i), r*(-1-i) with r = 7^(3/4)*sqrt(2)/14. The relevant factor for the two purely imaginary zeros is (1 + 3*x^2). - _Wolfdieter Lang_, Nov 13 2017
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
F:= proc(n) local x,d,i,A,B,R; d:= sort(convert(numtheory:-divisors(n),list)); A:= add(d[2*i]*x^(i-1),i=1..nops(d)/2); B:= add(d[2*i+1]*x^i,i=0..(nops(d)-1)/2); R:= gcd(A,B); sturm(sturmseq(R,x),x,-infinity,0) > 0; end proc: select(F, [$1..1000]); # Robert Israel, Nov 14 2017
-
Mathematica
Position[#, k_ /; k >= 2][[All, 1]] &@ Table[Count[Re /@ Values@ Apply[Join, Solve[Normal@ SeriesData[x, 0, #, 0, Length@ #, 1] == 0, x]], 0] &@ Divisors@ n, {n, 150}] (* Michael De Vlieger, Aug 21 2017 *)
-
PARI
isok(n) = {my(d = divisors(n), p = sum(k=1, #d, x^(k-1)*d[k])); #select(x->(real(x)==0), polroots(p)) >= 2;} \\ Michel Marcus, Sep 09 2017
Comments