A291184 p-INVERT of the positive integers, where p(S) = 1 - 4*S + 3*S^2.
4, 21, 104, 507, 2452, 11808, 56732, 272229, 1305400, 6257355, 29988140, 143701056, 688563508, 3299237877, 15807943688, 75741312603, 362900797636, 1738768378464, 8330956025036, 39916050834885, 191249400483544, 916331219497131, 4390407398410844
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (8, -17, 8, -1)
Programs
-
Mathematica
z = 60; s = x/(1 - x)^2; p = 1 - 4 s + 3 s^2; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291184 *) LinearRecurrence[{8,-17,8,-1},{4,21,104,507},30] (* Harvey P. Dale, Feb 24 2018 *)
Formula
G.f.: (4 - 11 x + 4 x^2)/(1 - 8 x + 17 x^2 - 8 x^3 + x^4).
a(n) = 8*a(n-1) - 17*a(n-2) + 8*a(n-3) - a(n-4).
Comments