cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291208 Number of noncube divisors of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 2, 2, 3, 1, 5, 1, 3, 3, 3, 1, 5, 1, 5, 3, 3, 1, 6, 2, 3, 2, 5, 1, 7, 1, 4, 3, 3, 3, 8, 1, 3, 3, 6, 1, 7, 1, 5, 5, 3, 1, 8, 2, 5, 3, 5, 1, 6, 3, 6, 3, 3, 1, 11, 1, 3, 5, 4, 3, 7, 1, 5, 3, 7, 1, 10, 1, 3, 5, 5, 3, 7, 1, 8, 3, 3, 1, 11, 3, 3, 3, 6, 1, 11, 3, 5, 3, 3, 3, 10, 1, 5, 5, 8, 1, 7, 1, 6, 7
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 21 2017

Keywords

Examples

			a(8) = 2 because 8 has 4 divisors {1, 2, 4, 8} among which 2 are noncubes {2, 4}.
		

Crossrefs

Programs

  • Mathematica
    nmax = 105; Rest[CoefficientList[Series[Sum[(x^k - x^k^3)/((1 - x^k) (1 - x^k^3)), {k, 1, nmax}], {x, 0, nmax}], x]]
    f1[p_, e_] := e + 1; f2[p_, e_] := 1 + Floor[e/3]; a[1] = 0; a[n_] := Module[{fct = FactorInteger[n]}, Times @@ f1 @@@ fct - Times @@ f2 @@@ fct]; Array[a, 100] (* Amiram Eldar, Jan 30 2025 *)
  • PARI
    a(n) = sumdiv(n, d, !ispower(d, 3)); \\ Michel Marcus, Aug 21 2017
    
  • Python
    from math import prod
    from sympy import factorint
    def A291208(n):
        f = factorint(n).values()
        return prod(e+1 for e in f)-prod(e//3+1 for e in f) # Chai Wah Wu, Jun 05 2025

Formula

G.f.: Sum_{k>=1} x^A007412(k)/(1 - x^A007412(k)).
G.f.: Sum_{k>=1} (x^k - x^(k^3))/((1 - x^k)*(1 - x^(k^3))).
a(n) = A000005(n) - A061704(n).
From Amiram Eldar, Jan 30 2025: (Start)
Dirichlet g.f.: zeta(s) * (zeta(s) - zeta(3*s)).
Sum_{k=1..n} a(k) ~ n*(log(n) + 2*gamma - zeta(3) - 1), where gamma is Euler's constant (A001620). (End)