cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291210 Numbers k such that round(k*k^(1/k)) - round((k-1)*(k-1)^(1/(k-1))) > 1.

Original entry on oeis.org

2, 4, 10, 27, 80, 230, 644, 1780, 4879, 13315, 36261, 98650, 268260, 729326, 1982655, 5389579, 14650584, 39824632, 108254817, 294267376, 799901968, 2174359323, 5910521810, 16066464445, 43673178798, 118716008808, 322703570021, 877199250941
Offset: 1

Views

Author

Hugo Pfoertner, Aug 21 2017

Keywords

Examples

			Let s(x) = x*x^(1/x); r(x) = round(s(x));
a(1) = 2:
  s(1) = 1,
  s(2) = 2.82842712474619...;
  r(1) = 1,
  r(2) = 3,
  r(2) - r(1) = 2;
a(2) = 4:
  s(3) = 4.32674871...,
  s(4) = 5.6568542...;
  r(3) = 4,
  r(4) = 6,
  r(4) - r(3) = 2;
...
a(19) = 108254817:
  s(108254816) = 108254834.49999999422...,
  s(108254817) = 108254835.50000000346...;
  r(108254816) = 108254834,
  r(108254817) = 108254836,
  r(108254817) - r(108254816) = 2.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Round[n*n^(1/n)]; g[k_] := f[k] > 1 + f[k-1]; A = Select[Range[2, 5000], g]; Do[AppendTo[A, SelectFirst[Floor[E Last@ A] + Range[1000], g]], {n, 19}]; A (* Giovanni Resta, Aug 21 2017 *)

Formula

Lim_{n->infinity} a(n)/a(n-1) = e.
It appears that, for most values of n, a(n) = floor(e^(n-1/2) + 7/8) - binomial(n,2). An exception occurs at n = 7; are there more? - Jon E. Schoenfield, Aug 22 2017
No more exceptions found through n = 30000. - Hugo Pfoertner, Aug 25 2017