A291261 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of continued fraction 1/(1 - x/(1 - 3^k*x/(1 - 5^k*x/(1 - 7^k*x/(1 - 9^k*x/(1 - ...)))))).
1, 1, 1, 1, 1, 2, 1, 1, 4, 5, 1, 1, 10, 31, 14, 1, 1, 28, 325, 364, 42, 1, 1, 82, 4159, 22150, 5746, 132, 1, 1, 244, 57349, 1790452, 2586250, 113944, 429, 1, 1, 730, 818911, 162045118, 1691509906, 461242900, 2719291, 1430, 1, 1, 2188, 11923525, 15520964284, 1289803048426, 2978600051368, 116651486125, 75843724, 4862
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, ... 2, 4, 10, 28, 82, 244, ... 5, 31, 325, 4159, 57349, 818911, ... 14, 364, 22150, 1790452, 162045118, 15520964284, ... 42, 5746, 2586250, 1691509906, 1289803048426, 1063421637466546, ...
Crossrefs
Programs
-
Mathematica
Table[Function[k, SeriesCoefficient[1/(1 + ContinuedFractionK[-(2 i - 1)^k x, 1, {i, 1, n}]), {x, 0, n}]][j - n], {j, 0, 9}, {n, 0, j}] // Flatten
Formula
G.f. of column k: 1/(1 - x/(1 - 3^k*x/(1 - 5^k*x/(1 - 7^k*x/(1 - 9^k*x/(1 - ...)))))), a continued fraction.