A291351 Numbers k such that k!4 + 2^10 is prime, where k!4 = k!!!! is the quadruple factorial number (A007662).
9, 13, 23, 27, 33, 47, 61, 113, 145, 161, 191, 281, 291, 417, 869, 919, 1213, 1297, 1663, 2103, 2297, 2325, 3241, 3895, 4337, 6645, 7911, 8737, 13369, 13555, 19245, 34025, 47779, 48589, 54521, 91355
Offset: 1
Examples
13!4 + 2^10 = 13*9*5*1 + 1024 = 1609 is prime, so 13 is in the sequence.
Links
- Henri & Renaud Lifchitz, PRP Records. Search for n!4+1024.
- Joe McLean, Interesting Sources of Probable Primes
- OpenPFGW Project, Primality Tester
Programs
-
Mathematica
MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]]; Select[Range[0, 50000], PrimeQ[MultiFactorial[#, 4] + 2^10] &] Select[Range[10^3],PrimeQ[Times@@Range[#,1,-4]+2^10]&] (* The program generates the first 16 terms of the sequence. *) (* Harvey P. Dale, Feb 08 2025 *)
Extensions
a(36)-a(37) from Robert Price, Sep 25 2019
Comments