A291355 Number of permutations s_1,s_2,...,s_n of 1,2,...,n such that for all j=1,2,...,n, j divides Sum_{i=1..j} s_i^3.
1, 1, 0, 2, 4, 8, 0, 8, 16, 24, 0, 46, 46, 46, 0, 218, 1658, 6542, 0, 0, 2172, 6200, 0, 0, 0, 0, 0, 1652, 5878, 26778, 0, 6242, 6242, 6242, 0, 0, 0, 179878, 0, 169024, 472924, 603878, 0, 123100, 123100, 758560, 0, 0, 0, 0, 0, 0, 244698, 489396, 0, 495512
Offset: 0
Keywords
Examples
1 divides 1^3, 2 divides 1^3 + 3^3, 3 divides 1^3 + 3^3 + 2^3, 4 divides 1^3 + 3^3 + 2^3 + 4^3. So [1, 3, 2, 4] satisfies all the conditions. --------------------------------------------- a(1) = 1: [[1]]; a(3) = 2: [[1, 3, 2], [3, 1, 2]]; a(4) = 4: [[1, 3, 2, 4], [2, 4, 3, 1], [3, 1, 2, 4], [4, 2, 3, 1]]; a(5) = 8: [[1, 3, 2, 4, 5], [2, 4, 3, 1, 5], [2, 4, 3, 5, 1], [3, 1, 2, 4, 5], [3, 5, 4, 2, 1], [4, 2, 3, 1, 5], [4, 2, 3, 5, 1], [5, 3, 4, 2, 1]].
Links
- Giovanni Resta, Table of n, a(n) for n = 0..100
Crossrefs
Cf. A291445.
Programs
-
Ruby
def search(a, sum, k, size, num) if num == size + 1 @cnt += 1 else (1..size).each{|i| if a[i - 1] == 0 && (sum + i ** k) % num == 0 a[i - 1] = 1 search(a, sum + i ** k, k, size, num + 1) a[i - 1] = 0 end } end end def A(k, n) a = [0] * n @cnt = 0 search(a, 0, k, n, 1) @cnt end def A291355(n) (0..n).map{|i| A(3, i)} end p A291355(20)
Extensions
a(0), a(13)-a(30) from Alois P. Heinz, Aug 23 2017
a(31)-a(55) from Giovanni Resta, Aug 23 2017
Comments