A291382
p-INVERT of (1,1,0,0,0,0,...), where p(S) = 1 - 2 S - S^2.
Original entry on oeis.org
2, 7, 22, 70, 222, 705, 2238, 7105, 22556, 71608, 227332, 721705, 2291178, 7273743, 23091762, 73308814, 232731578, 738846865, 2345597854, 7446508273, 23640235416, 75050038224, 238259397096, 756395887969, 2401310279090, 7623377054503, 24201736119310
Offset: 0
-
z = 60; s = x + x^2; p = 1 - 2 s - s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A019590 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291382 *)
A275439
Sum of the asymmetry degrees of all compositions of n with parts in {1,2}.
Original entry on oeis.org
0, 0, 0, 2, 2, 6, 12, 22, 42, 78, 140, 252, 448, 788, 1380, 2402, 4158, 7170, 12316, 21082, 35982, 61246, 103992, 176184, 297888, 502728, 846984, 1424738, 2393114, 4014270, 6725196, 11253694, 18810930, 31410894, 52400132, 87335604, 145438624, 242001692
Offset: 0
a(5) = 6 because the compositions of 5 with parts in {1,2} are 122, 212, 221, 1112, 1121, 1211, 2111, and 11111 and the sum of their asymmetry degrees is 1 + 0 + 1 + 1 + 1 + 1 + 1 + 0 = 6.
-
f := n -> combinat:-fibonacci(n):
a := n -> (n+1)/2-(3/2)*floor((n+2)/3)+(3/5)*(n+1)*f(n)-(1/10)*(2*n+5)*f(n+1):
seq(a(n), n = 0..40);
# alternative program:
g := 2*z^3/((1+z+z^2)*(1-z-z^2)^2):
gser := series(g, z=0, 45):
seq(coeff(gser, z, n), n = 0..40);
-
Join[{0}, Table[Total@ Map[Total, Map[BitXor[Take[# - 1, Ceiling[Length[#]/2]], Reverse@ Take[# - 1, -Ceiling[Length[#]/2]]] &,
Flatten[Map[Permutations, DeleteCases[IntegerPartitions@ n, {a_, _} /; a > 2]], 1]]], {n, 30}]] (* Michael De Vlieger, Aug 17 2016 *)
-
concat(vector(3), Vec(2*x^3/((1+x+x^2)*(1-x-x^2)^2) + O(x^50))) \\ Colin Barker, Aug 28 2016
Showing 1-2 of 2 results.
Comments