A291055 Number of maximal irredundant sets in the n-path graph.
1, 2, 2, 4, 6, 8, 13, 17, 27, 40, 57, 86, 122, 184, 269, 395, 582, 849, 1255, 1843, 2708, 3982, 5841, 8597, 12631, 18566, 27286, 40082, 58929, 86598, 127279, 187052, 274872, 404001, 593732, 872606, 1282416, 1884660, 2769856, 4070718, 5982611, 8792345
Offset: 1
Keywords
Examples
Case n=5: maximal irredundant sets represented as binary words are {00110, 01001, 01010, 01100, 10010, 10101}, so a(5)=6. - _Andrew Howroyd_, Aug 23 2017
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..500
- Eric Weisstein's World of Mathematics, Path Graph
- Eric Weisstein's World of Mathematics, Maximal Irredundant Set
- Index entries for linear recurrences with constant coefficients, signature (0, 1, 1, 1, 1, 0, -1, -2, -1, 2, 1, 0, 0, -1).
Programs
-
Mathematica
Rest @ CoefficientList[Series[x (1 + 2 x + x^2 + x^3 + x^4 - x^5 - x^6 - 2 x^7 + 3 x^9 - x^12 - x^13)/(1 - x^2 - x^3 - x^4 - x^5 + x^7 + 2 x^8 + x^9 - 2 x^10 - x^11 + x^14), {x, 0, 42}], x] (* Michael De Vlieger, Aug 24 2017 *) LinearRecurrence[{0, 1, 1, 1, 1, 0, -1, -2, -1, 2, 1, 0, 0, -1}, {1, 2, 2, 4, 6, 8, 13, 17, 27, 40, 57, 86, 122, 184}, 20] (* Eric W. Weisstein, Aug 28 2017 *) RootSum[1 - #^3 - 2 #^4 + #^5 + 2 #^6 + #^7 - #^9 - #^10 - #^11 - #^12 + #^14 &, -4480566127993567 #^n + 2115784835595702 #^(n+1) - 8803686900182082 #^(n+2) + 12438105918248674 #^(n+3) + 9975829435558087 #^(n+4) + 32647411155695559 #^(n+5) + 921201586573742 #^(n+6) - 12400355965941932 #^(n+7) - 18709447182799197 #^(n+8) - 16194871035876814 #^(n+9) - 8478829128434826 #^(n+10) - 3824486277258301 #^(n+11) + 902031297001609 #^(n+12) + 11119370357865554 #^(n+13) &]/333325507942333403 (* Eric W. Weisstein, Aug 28 2017 *)
-
PARI
Vec((1 + 2*x + x^2 + x^3 + x^4 - x^5 - x^6 - 2*x^7 + 3*x^9 - x^12 - x^13)/(1 - x^2 - x^3 - x^4 - x^5 + x^7 + 2*x^8 + x^9 - 2*x^10 - x^11 + x^14)+O(x^40)) \\ Andrew Howroyd, Aug 23 2017
Formula
From Andrew Howroyd, Aug 23 2017: (Start)
a(n) = a(n-2) + a(n-3) + a(n-4) + a(n-5) - a(n-7) - 2*a(n-8) - a(n-9) + 2*a(n-10) + a(n-11) - a(n-14) for n > 14.
G.f.: x*(1 + 2*x + x^2 + x^3 + x^4 - x^5 - x^6 - 2*x^7 + 3*x^9 - x^12 - x^13)/(1 - x^2 - x^3 - x^4 - x^5 + x^7 + 2*x^8 + x^9 - 2*x^10 - x^11 + x^14).
(End)
Extensions
Terms a(21) and beyond from Andrew Howroyd, Aug 23 2017
Comments