cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291452 Triangle read by rows, expansion of e.g.f. exp(x*(cos(z) + cosh(z) - 2)/2), nonzero coefficients of z.

Original entry on oeis.org

1, 0, 1, 0, 1, 35, 0, 1, 495, 5775, 0, 1, 8255, 450450, 2627625, 0, 1, 130815, 35586525, 727476750, 2546168625, 0, 1, 2098175, 2941884000, 181262956875, 1932541986375, 4509264634875
Offset: 0

Views

Author

Peter Luschny, Sep 07 2017

Keywords

Examples

			Triangle starts:
[1]
[0, 1]
[0, 1,      35]
[0, 1,     495,       5775]
[0, 1,    8255,     450450,      2627625]
[0, 1,  130815,   35586525,    727476750,    2546168625]
[0, 1, 2098175, 2941884000, 181262956875, 1932541986375, 4509264634875]
		

Crossrefs

Cf. A048993 (m=1), A156289 (m=2), A291451 (m=3), this seq. (m=4).
Diagonal: A000012 (m=1), A001147 (m=2), A025035 (m=3), A025036 (m=4).
Row sums: A000110 (m=1), A005046 (m=2), A291973 (m=3), A291975 (m=4).
Alternating row sums: A000587 (m=1), A260884 (m=2), A291974 (m=3), A291976 (m=4).

Programs

  • Maple
    CL := (f,x) -> PolynomialTools:-CoefficientList(f,x):
    A291452_row := proc(n) exp(x*(cos(z)+cosh(z)-2)/2):
    series(%, z, 88): CL((4*n)!*coeff(series(%,z,4*(n+1)),z,4*n),x) end:
    for n from 0 to 7 do A291452_row(n) od;
    # Alternative:
    A291452row := proc(n) local P; P := proc(m, n) option remember;
    if n = 0 then 1 else add(binomial(m*n, m*k)*P(m, n-k)*x, k=1..n) fi end:
    CL(P(4, n), x); seq(%[k+1]/k!, k=0..n) end: # Peter Luschny, Sep 03 2018
  • Mathematica
    P[m_, n_] := P[m, n] = If[n == 0, 1, Sum[Binomial[m*n, m*k]*P[m, n - k]*x, {k, 1, n}]];
    row[n_] := Module[{cl = CoefficientList[P[4, n], x]}, Table[cl[[k + 1]]/k!, {k, 0, n}]];
    Table[row[n], {n, 0, 6}] // Flatten (* Jean-François Alcover, Jul 23 2019, after Peter Luschny *)