cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A327418 a(n) = A291452(2*n, n).

Original entry on oeis.org

1, 1, 8255, 2941884000, 11957867341948125, 294040106448733743008625, 30188472144950452369737153667500, 10143939867539251013312279527292897925000, 9389957475743686923255643914812959599614184703125, 21058194888200109612591474039339954750056969537259132421875
Offset: 0

Views

Author

Peter Luschny, Sep 14 2019

Keywords

Crossrefs

Cf. A007820 (m=1), A327416 (m=2), A327417 (m=3), this sequence (m=4).
Associated triangles: A048993 (m=1), A156289 (m=2), A291451 (m=3), A291452 (m=4).

Programs

  • Sage
    # uses[P from A327416]
    def A327418(n): return P(4, 2*n).list()[n]//factorial(n)
    print([A327418(n) for n in range(10)])

A291975 a(n) = (4*n)! * [z^(4*n)] exp((cos(z) + cosh(z))/2 - 1).

Original entry on oeis.org

1, 1, 36, 6271, 3086331, 3309362716, 6626013560301, 22360251390209461, 118214069460929849196, 926848347928901638652131, 10326354052861964007954596391, 157987763647812764532709527137476, 3227443522308474152275617569919520761
Offset: 0

Views

Author

Peter Luschny, Sep 07 2017

Keywords

Comments

Row sums of A291452.

Crossrefs

Cf. A291452.

Programs

  • Maple
    A291975 := proc(n) exp((cos(z) + cosh(z))/2 - 1):
    (4*n)!*coeff(series(%, z, 4*(n+1)), z, 4*n) end:
    seq(A291975(n), n=0..12);
  • Mathematica
    P[m_, n_] := P[m, n] = If[n == 0, 1, Sum[Binomial[m*n, m*k]*P[m, n - k]*x, {k, 1, n}]];
    a[n_] := Module[{cl = CoefficientList[P[4, n], x]}, Sum[cl[[k + 1]]/k!, {k, 0, n}]];
    Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Jul 23 2019, after Peter Luschny in A291452 *)
  • PARI
    seq(n)={my(a=vector(n+1)); a[1]=1; for(n=1, n, a[1+n]=sum(k=1, n, binomial(4*n-1, 4*k-1) * a[1+n-k])); a} \\ Andrew Howroyd, Jan 21 2020

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(4*n-1,4*k-1) * a(n-k). - Ilya Gutkovskiy, Jan 21 2020

A260876 Number of m-shape set partitions, square array read by ascending antidiagonals, A(m,n) for m, n >= 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 4, 5, 5, 1, 1, 11, 31, 15, 7, 1, 1, 36, 365, 379, 52, 11, 1, 1, 127, 6271, 25323, 6556, 203, 15, 1, 1, 463, 129130, 3086331, 3068521, 150349, 877, 22, 1, 1, 1717, 2877421, 512251515, 3309362716, 583027547, 4373461, 4140, 30
Offset: 0

Views

Author

Peter Luschny, Aug 02 2015

Keywords

Comments

A set partition of m-shape is a partition of a set with cardinality m*n for some n >= 0 such that the sizes of the blocks are m times the parts of the integer partitions of n.
If m = 0, all possible sizes are zero. Thus the number of set partitions of 0-shape is the number of integer partitions of n (partition numbers A000041).
If m = 1, the set is {1, 2, ..., n} and the set of all possible sizes are the integer partitions of n. Thus the number of set partitions of 1-shape is the number of set partitions (Bell numbers A000110).
If m = 2, the set is {1, 2, ..., 2n} and the number of set partitions of 2-shape is the number of set partitions into even blocks A005046.
From Petros Hadjicostas, Aug 06 2019: (Start)
Irwin (1916) proved the following combinatorial result: Assume r_1, r_2, ..., r_n are positive integers and we have r_1*r_2*...*r_n objects. We divide them into r_1 classes of r_2*r_3*...*r_n objects each, then each class into r_2 subclasses of r_3*...*r_n objects each, and so on. We call each such classification, without reference to order, a "classification" par excellence. He proved that the total number of classifications is (r_1*r_2*...*r_n)!/( r1! * (r_2!)^(r_1) * (r_3!)^(r_1*r_2) * ... (r_n!)^(r_1*r_2*...*r_{n-1}) ).
Apparently, this problem appeared in Carmichael's "Theory of Numbers".
This result can definitely be used to prove some special cases of my conjecture below. (End)

Examples

			[ n ] [0  1   2       3        4           5              6]
[ m ] ------------------------------------------------------
[ 0 ] [1, 1,  2,      3,       5,          7,            11]  A000041
[ 1 ] [1, 1,  2,      5,      15,         52,           203]  A000110
[ 2 ] [1, 1,  4,     31,     379,       6556,        150349]  A005046
[ 3 ] [1, 1, 11,    365,   25323,    3068521,     583027547]  A291973
[ 4 ] [1, 1, 36,   6271, 3086331, 3309362716, 6626013560301]  A291975
        A260878,A309725, ...
For example the number of set partitions of {1,2,...,9} with sizes in [9], [6,3] and [3,3,3] is 1, 84 and 280 respectively. Thus A(3,3) = 365.
Formatted as a triangle:
[1]
[1, 1]
[1, 1,   2]
[1, 1,   2,    3]
[1, 1,   4,    5,     5]
[1, 1,  11,   31,    15,    7]
[1, 1,  36,  365,   379,   52,  11]
[1, 1, 127, 6271, 25323, 6556, 203, 15]
.
From _Peter Luschny_, Aug 14 2019: (Start)
For example consider the case n = 4. There are five integer partitions of 4:
  P = [[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]]. The shapes are m times the parts of the integer partitions: S(m) = [[4m], [3m, m], [2m, 2m], [2m, m, m], [m, m, m, m]].
* In the case m = 1 we look at set partitions of {1, 2, 3, 4} with sizes in  [[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]] which gives rise to [1, 4, 3, 6, 1] with sum 15.
* In the case m = 2 we look at set partitions of {1, 2, .., 8} with sizes in [[8], [6, 2], [4, 4], [4, 2, 2], [2, 2, 2, 2]] which gives rise to [1, 28, 35, 210, 105] with sum 379.
* In the case m = 0 we look at set partitions of {} with sizes in [[0], [0, 0], [0, 0], [0, 0, 0], [0, 0, 0, 0]] which gives rise to [1, 1, 1, 1, 1] with sum 5 (because the only partition of the empty set is the set that contains the empty set, thus from the definition T(0,4) = Sum_{S(0)} card({0}) = A000041(4) = 5).
If n runs through 0, 1, 2,... then the result is an irregular triangle in which the n-th row lists multinomials for partitions of [m*n] which have only parts which are multiples of m. These are the triangles A080575 (m = 1), A257490 (m = 2), A327003 (m = 3), A327004 (m = 4). In the case m = 0 the triangle is A000012 subdivided into rows of length A000041. See the cross references how this case integrates into the full picture.
(End)
		

Crossrefs

-----------------------------------------------------------------
[m] | multi- | sum of | main | by | comple- |
| nomials | rows | diagonal | size | mentary |
-----------------------------------------------------------------
Cf. A326996 (main diagonal), A260883 (ordered), A260875 (complementary).
Columns include A000012, A260878, A309725.

Programs

  • Maple
    A:= proc(m, n) option remember; `if`(m=0, combinat[numbpart](n),
          `if`(n=0, 1, add(binomial(m*n-1, m*k-1)*A(m, n-k), k=1..n)))
        end:
    seq(seq(A(d-n, n), n=0..d), d=0..10);  # Alois P. Heinz, Aug 14 2019
  • Mathematica
    A[m_, n_] := A[m, n] = If[m==0, PartitionsP[n], If[n==0, 1, Sum[Binomial[m n - 1, m k - 1] A[m, n - k], {k, 1, n}]]];
    Table[Table[A[d - n, n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 06 2019, after Alois P. Heinz *)
  • SageMath
    def A260876(m, n):
        shapes = ([x*m for x in p] for p in Partitions(n))
        return sum(SetPartitions(sum(s), s).cardinality() for s in shapes)
    for m in (0..4): print([A260876(m,n) for n in (0..6)])

Formula

From Petros Hadjicostas, Aug 02 2019: (Start)
A(m, 2) = 1 + (1/2) * binomial(2*m, m) for m >= 1.
A(m, 3) = 1 + binomial(3*m, m) + (3*m)!/(6 * (m!)^3) for m >= 1.
A(m, 4) = (1/4!) * multinomial(4*m, [m, m, m, m]) + (1/2) * multinomial(4*m, [2*m, m, m]) + multinomial(4*m, [m, 3*m]) + (1/2) * multinomial(4*m, [2*m, 2*m]) + 1 for m >= 1.
Conjecture: For n >= 0, let P be the set of all possible lists (a_1,...,a_n) of nonnegative integers such that a_1*1 + a_2*2 + ... + a_n*n = n. Consider terms of the form multinomial(n*m, m*[1,..., 1,2,..., 2,..., n,..., n])/(a_1! * a_2! * ... * a_n!), where in the list [1,...,1,2,...,2,...,n,...,n] the number 1 occurs a_1 times, 2 occurs a_2 times, ..., and n occurs a_n times. (Here a_n = 0 or 1.) Summing these terms over P we get A(m, n) provided m >= 1. (End)
Conjecture for a recurrence: A(m, n) = Sum_{k = 0..n-1} binomial(m*n - 1, m*k) * A(m, k) with A(m, 0) = 1 for m >= 1 and n >= 0. (Unfortunately, the recurrence does not hold for m = 0.) - Petros Hadjicostas, Aug 12 2019

A291451 Triangle read by rows, expansion of e.g.f. exp(x*(exp(z)/3 + 2*exp(-z/2)* cos(z*sqrt(3)/2)/3 - 1)), nonzero coefficients of z.

Original entry on oeis.org

1, 0, 1, 0, 1, 10, 0, 1, 84, 280, 0, 1, 682, 9240, 15400, 0, 1, 5460, 260260, 1401400, 1401400, 0, 1, 43690, 7128576, 99379280, 285885600, 190590400, 0, 1, 349524, 193360720, 6600492080, 42549306800, 76045569600, 36212176000
Offset: 0

Views

Author

Peter Luschny, Sep 07 2017

Keywords

Examples

			Triangle starts:
[1]
[0, 1]
[0, 1,    10]
[0, 1,    84,     280]
[0, 1,   682,    9240,    15400]
[0, 1,  5460,  260260,  1401400,   1401400]
[0, 1, 43690, 7128576, 99379280, 285885600, 190590400]
		

Crossrefs

Cf. A048993 (m=1), A156289 (m=2), this seq. (m=3), A291452 (m=4).
Diagonal: A000012 (m=1), A001147 (m=2), A025035 (m=3), A025036 (m=4).
Row sums: A000110 (m=1), A005046 (m=2), A291973 (m=3), A291975 (m=4).
Alternating row sums: A000587 (m=1), A260884 (m=2), A291974 (m=3), A291976 (m=4).

Programs

  • Maple
    CL := (f, x) -> PolynomialTools:-CoefficientList(f, x):
    A291451_row := proc(n) exp(x*(exp(z)/3+2*exp(-z/2)*cos(z*sqrt(3)/2)/3-1)):
    series(%, z, 66): CL((3*n)!*coeff(series(%,z,3*(n+1)),z,3*n),x) end:
    for n from 0 to 7 do A291451_row(n) od;
    # Alternative:
    A291451row := proc(n) local P; P := proc(m, n) option remember;
    if n = 0 then 1 else add(binomial(m*n, m*k)*P(m, n-k)*x, k=1..n) fi end:
    CL(P(3, n), x); seq(%[k+1]/k!, k=0..n) end: # Peter Luschny, Sep 03 2018
  • Mathematica
    P[m_, n_] := P[m, n] = If[n == 0, 1, Sum[Binomial[m*n, m*k]*P[m, n - k]*x, {k, 1, n}]];
    row[n_] := Module[{cl = CoefficientList[P[3, n], x]}, Table[cl[[k + 1]]/k!, {k, 0, n}]];
    Table[row[n], {n, 0, 7}] // Flatten (* Jean-François Alcover, Jul 23 2019, after Peter Luschny *)

A291976 a(n) = (4*n)! * [z^(4*n)] exp(1 - (cos(z) + cosh(z))/2).

Original entry on oeis.org

1, -1, 34, -5281, 2185429, -1854147586, 2755045819549, -6440372006517541, 21861211462545555394, -100916681831006840635021, 596756926975162013357972089, -4237398636260867429185819175026, 32919774165127854788267224335178009
Offset: 0

Views

Author

Peter Luschny, Sep 07 2017

Keywords

Comments

Alternating row sums of A291452.

Crossrefs

Cf. A291452.

Programs

  • Maple
    A291976 := proc(n) exp(1 - (cos(z) + cosh(z))/2):
    (4*n)!*coeff(series(%, z, 4*(n+1)), z, 4*n) end:
    seq(A291976(n), n=0..12);
    # second Maple program:
    b:= proc(n, t) option remember; `if`(n=0, 1-2*t, add(
          b(n-4*j, 1-t)*binomial(n-1, 4*j-1), j=1..n/4))
        end:
    a:= n-> b(4*n, 0):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 14 2019
  • Mathematica
    b[n_, t_] := b[n, t] = If[n == 0, 1-2t, Sum[b[n-4j, 1-t] * Binomial[n-1, 4j-1], {j, 1, n/4}]];
    a[n_] := b[4n, 0];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jan 27 2023, after Alois P. Heinz *)

A327416 a(n) = A156289(2*n, n).

Original entry on oeis.org

1, 1, 63, 21120, 20585565, 44025570225, 175418438510700, 1169944052730453000, 12110024900113702687125, 183906442861089163922581875, 3923248989041777334572795737575, 113570018319217734510803494872644700, 4337118170117525113961286942555563803500
Offset: 0

Views

Author

Peter Luschny, Sep 14 2019

Keywords

Crossrefs

Cf. A007820 (m=1), this sequence (m=2), A327417 (m=3), A327418 (m=4).
Associated triangles: A048993 (m=1), A156289 (m=2), A291451 (m=3), A291452 (m=4).

Programs

  • SageMath
    @cached_function
    def P(m, n):
        x = polygen(ZZ)
        if n == 0: return x^0
        return expand(sum(binomial(m*n, m*k)*P(m, n-k)*x for k in (1..n)))
    def A327416(n): return P(2, 2*n).list()[n]//factorial(n)
    print([A327416(n) for n in range(13)])

A327417 a(n) = A291451(2*n, n).

Original entry on oeis.org

1, 1, 682, 7128576, 429120851544, 94066556834970720, 57496301859366489159040, 82247725949165261902606309120, 243263294602173417290925789755652480, 1356449073308047884259226117174893156252800, 13275987570857688650109290727617026478737341900800
Offset: 0

Views

Author

Peter Luschny, Sep 14 2019

Keywords

Crossrefs

Cf. A007820 (m=1), A327416 (m=2), this sequence (m=3), A327418 (m=4).
Associated triangles: A048993 (m=1), A156289 (m=2), A291451 (m=3), A291452 (m=4).

Programs

  • Sage
    # uses[P from A327416]
    def A327417(n): return P(3, 2*n).list()[n]//factorial(n)
    print([A327417(n) for n in range(11)])

A327004 Irregular triangle read by rows in which the n-th row lists multinomials for partitions of 4n which have only parts which are multiples of 4, in Hindenburg order.

Original entry on oeis.org

1, 1, 1, 35, 1, 495, 5775, 1, 1820, 6435, 450450, 2627625, 1, 4845, 125970, 4408950, 31177575, 727476750, 2546168625, 1, 10626, 735471, 25741485, 1352078, 1338557220, 15616500900, 1577585295, 165646455975, 1932541986375, 4509264634875
Offset: 0

Views

Author

Peter Luschny, Aug 14 2019

Keywords

Comments

The Hindenburg order refers to the partition generating algorithm of C. F. Hindenburg (1779). [Knuth 7.2.1.4H]

Examples

			The irregular triangle starts:
[0] [1]
[1] [1]
[2] [1, 35]
[3] [1, 495, 5775]
[4] [1, 1820, 6435, 450450, 2627625]
[5] [1, 4845, 125970, 4408950, 31177575, 727476750, 2546168625]
[6] [1, 10626, 735471, 25741485, 1352078, 1338557220, 15616500900, 1577585295, 165646455975, 1932541986375, 4509264634875]
		

Crossrefs

Cf. A000012 (m=0, subdivided into rows of length A000041), A080575 (m=1), A257490 (m=2), A327003 (m=3), this sequence (m=4).
Cf. A000041 (length of rows), A291975 (sum of rows), A291452 (coarser subdivision).
Cf. A260876.

Programs

  • SageMath
    def A327004row(n):
        shapes = ([4*x for x in p] for p in Partitions(n))
        return [SetPartitions(sum(s), s).cardinality() for s in shapes]
    for n in (0..6): print((A327004row(n)))

Formula

Row of lengths are in A000041.

A361948 Array read by ascending antidiagonals. A(n, k) = Product_{j=0..k-1} binomial((j + 1)*n - 1, n - 1) if n >= 1, and A(0, k) = 1 for all k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 10, 15, 1, 1, 1, 1, 35, 280, 105, 1, 1, 1, 1, 126, 5775, 15400, 945, 1, 1, 1, 1, 462, 126126, 2627625, 1401400, 10395, 1, 1, 1, 1, 1716, 2858856, 488864376, 2546168625, 190590400, 135135, 1, 1
Offset: 0

Views

Author

Peter Luschny, Apr 13 2023

Keywords

Comments

Row n gives the leading coefficients of the set partition polynomials of type n. The sequence of these polynomial sequences starts: A097805, A048993, A156289, A291451, A291452, ...

Examples

			Array A(n, k) starts:
  [0] 1, 1,   1,       1,           1,                 1, ...
  [1] 1, 1,   1,       1,           1,                 1, ...
  [2] 1, 1,   3,      15,         105,               945, ...  A001147
  [3] 1, 1,  10,     280,       15400,           1401400, ...  A025035
  [4] 1, 1,  35,    5775,     2627625,        2546168625, ...  A025036
  [5] 1, 1, 126,  126126,   488864376,     5194672859376, ...  A025037
  [6] 1, 1, 462, 2858856, 96197645544, 11423951396577720, ...  A025038
.
Triangle A(n-k, k) starts:
  [0] 1;
  [1] 1, 1;
  [2] 1, 1,  1;
  [3] 1, 1,  1,   1;
  [4] 1, 1,  3,   1,   1;
  [5] 1, 1, 10,  15,   1, 1;
  [6] 1, 1, 35, 280, 105, 1, 1;
		

Crossrefs

Cf. A060540 (subarray), A370407 (antidiagonal sums, row sums).
Cf. A001147 (row 2), A025035 (row 3), A025036 (row 4), A025037 (row 5), A025038 (row 6), A025039 (row 7), A025040 (row 8), A025041 (row 9).
Cf. A088218 (column 2), A060542 (column 3), A082368 (column 4), A322252 (column 5), A057599 (main diagonal).

Programs

  • Maple
    A := (n, k) -> mul(binomial((j + 1)*n - 1, n - 1), j = 0..k-1):
    seq(seq(A(n-k, k), k = 0..n), n = 0..9);
    # Alternative, using recursion:
    A := proc(n, k) local P; P := proc(n, k) option remember;
    if n = 0 then return x^k*k! fi; if k = 0 then 1 else add(binomial(n*k, n*j)*
    P(n,k-j)*x, j=1..k) fi end: coeff(P(n, k), x, k) / k! end:
    seq(print(seq(A(n, k), k = 0..5)), n = 0..6);
    # Alternative, using exponential generating function:
    egf := n -> ifelse(n=0, 1, exp(x^n/n!)): ser := n -> series(egf(n), x, 8*n):
    row := n -> local k; seq((n*k)!*coeff(ser(n), x, n*k), k = 0..6):
    for n from 0 to 6 do [n], row(n) od;  # Peter Luschny, Aug 15 2024
  • Mathematica
    A[n_, k_] := Product[Binomial[n (j + 1) - 1, n - 1], {j, 0, k - 1}]; Table[A[n - k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Apr 13 2023 *)
  • SageMath
    def Arow(n, size):
        if n == 0: return [1] * size
        return [prod(binomial((j + 1)*n - 1, n - 1) for j in range(k)) for k in range(size)]
    for n in range(7): print(Arow(n, 7))
    # Alternative, using exponential generating function:
    def SetPolyLeadCoeff(m, n):
        x, z = var("x, z")
        if m == 0: return 1
        w = exp(2 * pi * I / m)
        o = sum(exp(z * w ** k) for k in range(m)) / m
        t = exp(x * (o - 1)).taylor(z, 0, m*n)
        p = factorial(m*n) * t.coefficient(z, m*n)
        return p.leading_coefficient(x)
    for m in range(7):
        print([SetPolyLeadCoeff(m, k) for k in range(6)])

Formula

A(n, k) = (1/k!) * [x^k] P(n, k), where P(n, k) = k!*x^k if n = 0 and otherwise 1 if k = 0 and otherwise Sum_{j=1..k} binomial(n*k, n*j)*P(n, k-j)*x.
A(n, k) = (n*k)!*[x^(n*k)] exp(x^n/n!) for n >= 1. - Peter Luschny, Aug 15 2024

A362370 Triangle read by rows. T(n, k) = ([x^k] P(n, x)) // k! where P(n, x) = Sum_{k=1..n} P(n - k, x) * x if n >= 1 and P(0, x) = 1. The notation 's // t' means integer division and is a shortcut for 'floor(s/t)'.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 1, 3, 2, 0, 0, 0, 0, 0, 1, 3, 3, 1, 0, 0, 0, 0, 0, 1, 4, 4, 2, 0, 0, 0, 0, 0, 0, 1, 4, 6, 3, 1, 0, 0, 0, 0, 0, 0, 1, 5, 7, 5, 1, 0, 0, 0, 0, 0, 0, 0, 1, 5, 9, 6, 2, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Peter Luschny, Apr 17 2023

Keywords

Comments

Row n gives the coefficients of the set partition polynomials of type m = 0 (the base case). The sequence of these polynomial sequences starts: this sequence, A048993, A156289, A291451, A291452, ...

Examples

			Triangle T(n, k) starts:
  [0] [1]
  [1] [0, 1]
  [2] [0, 1, 0]
  [3] [0, 1, 1, 0]
  [4] [0, 1, 1, 0, 0]
  [5] [0, 1, 2, 1, 0, 0]
  [6] [0, 1, 2, 1, 0, 0, 0]
  [7] [0, 1, 3, 2, 0, 0, 0, 0]
  [8] [0, 1, 3, 3, 1, 0, 0, 0, 0]
  [9] [0, 1, 4, 4, 2, 0, 0, 0, 0, 0]
		

Crossrefs

Cf. A097805, A362307 (row sums).
Cf. the family of partition polynomials: this sequence (m=0), A048993 (m=1), A156289 (m=2), A291451 (m=3), A291452 (m=4).

Programs

  • Maple
    T := (n, k) -> iquo(binomial(n - 1, k - 1), k!):
    seq(print(seq(T(n, k), k = 0..n)), n = 0..9);
  • SageMath
    R = PowerSeriesRing(ZZ, "x")
    x = R.gen().O(33)
    @cached_function
    def p(n) -> Polynomial:
        if n == 0: return R(1)
        return sum(p(n - k) * x for k in range(1, n + 1))
    def A362370_row(n) -> list[int]:
        L = p(n).list()
        return [L[k] // factorial(k) for k in range(n + 1)]
    for n in range(10):
        print(A362370_row(n))

Formula

T(n, k) = floor(A097805(n, k) / k!).
Showing 1-10 of 11 results. Next