cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291482 Expansion of e.g.f. arcsin(x)*exp(x).

Original entry on oeis.org

0, 1, 2, 4, 8, 24, 80, 456, 2368, 20352, 139648, 1577984, 13327360, 185992832, 1860708096, 30882985472, 356724338688, 6860887896064, 89815091306496, 1963843714723840, 28724760194564096, 703639672161697792, 11370790299166343168, 308435832182144040960, 5456591088206554333184, 162354575283061816197120
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 24 2017

Keywords

Examples

			E.g.f.: A(x) = x/1! + 2*x^2/2! + 4*x^3/3! + 8*x^4/4! + 24*x^5/5! + ...
		

Crossrefs

Cf. A001818, A009545, A012316, A081919 (first differences).

Programs

  • Maple
    a:=series(arcsin(x)*exp(x),x=0,26): seq(n!*coeff(a,x,n),n=0..25); # Paolo P. Lava, Mar 27 2019
  • Mathematica
    nmax = 25; Range[0, nmax]! CoefficientList[Series[ArcSin[x] Exp[x], {x, 0, nmax}], x]
    nmax = 25; Range[0, nmax]! CoefficientList[Series[Exp[x] x Sqrt[1 - x^2]/(1 + ContinuedFractionK[-2 x^2 Floor[(k + 1)/2] (2 Floor[(k + 1)/2] - 1), 2 k + 1, {k, 1, nmax}]), {x, 0, nmax}], x]
    nmax = 25; Range[0, nmax]! CoefficientList[Series[Sum[(x^(2 k + 1) Pochhammer[1/2, k])/(k! + 2 k k!), {k, 0, Infinity}] Exp[x], {x, 0, nmax}], x]
    Table[Sum[Binomial[n,2k+1]Binomial[2k,k] (2k)!/4^k,{k,0,(n-1)/2}],{n,0,12}] (* Emanuele Munarini, Dec 17 2017 *)
  • Maxima
    makelist(sum(binomial(n,2*k+1)*binomial(2*k,k)*(2*k)!/4^k,k,0,floor((n-1)/2)),n,0,12); /* Emanuele Munarini, Dec 17 2017 */
    
  • PARI
    x='x+O('x^99); concat(0, Vec(serlaplace(asin(x)*exp(x)))) \\ Altug Alkan, Dec 17 2017

Formula

E.g.f.: exp(x)*x*sqrt(1 - x^2)/(1 - 1*2*x^2/(3 - 1*2*x^2/(5 - 3*4*x^2/(7 - 3*4*x^2/(9 - ...))))), a continued fraction.
a(n) ~ (exp(2) - (-1)^n) * n^(n-1) / exp(n+1). - Vaclav Kotesovec, Aug 26 2017
From Emanuele Munarini, Dec 17 2017: (Start)
a(n) = Sum_{k=0..(n-1)/2} binomial(n,2*k+1)*binomial(2*k,k)* (2k)!/4^k.
a(n+4) - 2*a(n+3) - (n^2+4*n+3)*a(n+2) + (n+2)*(2*n+3)*a(n+1) - (n+1)*(n+2)*a(n) = 0. (End)